Using Deep Learning for Morphological Classification in Pigs with a Focus on Sanitary Monitoring
- URL: http://arxiv.org/abs/2403.08962v1
- Date: Wed, 13 Mar 2024 21:05:34 GMT
- Title: Using Deep Learning for Morphological Classification in Pigs with a Focus on Sanitary Monitoring
- Authors: Eduardo Bedin, Junior Silva Souza, Gabriel Toshio Hirokawa Higa, Alexandre Pereira, Charles Kiefer, Newton Loebens, Hemerson Pistori,
- Abstract summary: The study focused on five pig characteristics, being these caudophagy, ear hematoma, scratches on the body, redness, and natural stains (brown or black)
The results of the study showed that D-CNN was effective in classifying deviations in pig body morphologies related to skin characteristics.
- Score: 36.44117994399959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this paper is to evaluate the use of D-CNN (Deep Convolutional Neural Networks) algorithms to classify pig body conditions in normal or not normal conditions, with a focus on characteristics that are observed in sanitary monitoring, and were used six different algorithms to do this task. The study focused on five pig characteristics, being these caudophagy, ear hematoma, scratches on the body, redness, and natural stains (brown or black). The results of the study showed that D-CNN was effective in classifying deviations in pig body morphologies related to skin characteristics. The evaluation was conducted by analyzing the performance metrics Precision, Recall, and F-score, as well as the statistical analyses ANOVA and the Scott-Knott test. The contribution of this article is characterized by the proposal of using D-CNN networks for morphological classification in pigs, with a focus on characteristics identified in sanitary monitoring. Among the best results, the average Precision metric of 80.6\% to classify caudophagy was achieved for the InceptionResNetV2 network, indicating the potential use of this technology for the proposed task. Additionally, a new image database was created, containing various pig's distinct body characteristics, which can serve as data for future research.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection [24.07349410158827]
We design a regression model for fruit sugar level estimation using an Artificial Neural Network (ANN) based on the visible/near-infrared (V/NIR) spectra of fruits.
Using fruit sugar levels as the detection target, we collected data from two fruit types, Gan Nan Navel and Tian Shan Pear, and conducted experiments to compare their results.
arXiv Detail & Related papers (2023-11-18T17:07:25Z) - Bayesian Time-Series Classifier for Decoding Simple Visual Stimuli from
Intracranial Neural Activity [0.0]
We propose a straightforward Bayesian time series classifier (BTsC) model that tackles challenges whilst maintaining a high level of interpretability.
We demonstrate the classification capabilities of this approach by utilizing neural data to decode colors in a visual task.
The proposed solution can be applied to neural data recorded in various tasks, where there is a need for interpretable results.
arXiv Detail & Related papers (2023-07-28T17:04:06Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
Deep neural networks (DNN) show significant advantages in computer vision applications.
We present here a shallow neural network that uses mainly two convolutional neural network layers, with relatively few parameters and fast to learn spectral-temporal features from EEG.
Experimental results showed that the shallow CNN model outperformed all the other models and achieved the highest classification accuracy of 90.68%.
arXiv Detail & Related papers (2022-09-26T02:15:22Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
We propose a deep-learning-based framework for neuropsychological score prediction using white matter tract data.
We represent the arcuate fasciculus (AF) as a point cloud with microstructure measurements at each point.
We improve prediction performance with the proposed Paired-Siamese Loss that utilizes information about differences between continuous neuropsychological scores.
arXiv Detail & Related papers (2022-07-06T02:03:28Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Evaluation of Big Data based CNN Models in Classification of Skin
Lesions with Melanoma [7.919213739992465]
The architecture is based on convolu-tional neural networks and it is evaluated using new CNN models as well as re-trained modification of pre-existing CNN models were used.
The best performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%.
arXiv Detail & Related papers (2020-07-10T15:39:32Z) - Automate Obstructive Sleep Apnea Diagnosis Using Convolutional Neural
Networks [4.882119124419393]
This paper presents a CNN architecture with 1D convolutional and FCN layers for classification.
The proposed 1D CNN model achieves excellent classification results without manually preprocesssing PSG signals.
arXiv Detail & Related papers (2020-06-13T15:35:18Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.