AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents
- URL: http://arxiv.org/abs/2403.08978v1
- Date: Wed, 13 Mar 2024 22:06:03 GMT
- Title: AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents
- Authors: Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae, Honglak Lee,
- Abstract summary: AutoGuide bridges the knowledge gap in pre-trained LLMs by leveraging implicit knowledge in offline experiences.
We show that our approach outperforms competitive LLM-based baselines by a large margin in sequential decision-making benchmarks.
- Score: 74.17623527375241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The primary limitation of large language models (LLMs) is their restricted understanding of the world. This poses significant difficulties for LLM-based agents, particularly in domains where pre-trained LLMs lack sufficient knowledge. In this paper, we introduce a novel framework, called AutoGuide, that bridges the knowledge gap in pre-trained LLMs by leveraging implicit knowledge in offline experiences. Specifically, AutoGuide effectively extracts knowledge embedded in offline data by extracting a set of state-aware guidelines. Importantly, each state-aware guideline is expressed in concise natural language and follows a conditional structure, clearly describing the state where it is applicable. As such, the resulting guidelines enable a principled way to provide helpful knowledge pertinent to an agent's current decision-making process. We show that our approach outperforms competitive LLM-based baselines by a large margin in sequential decision-making benchmarks.
Related papers
- SAME: Learning Generic Language-Guided Visual Navigation with State-Adaptive Mixture of Experts [54.11162991206203]
This paper consolidates diverse navigation tasks into a unified and generic framework.
We propose a novel State-Adaptive Mixture of Experts (SAME) model that effectively enables an agent to infer decisions.
arXiv Detail & Related papers (2024-12-07T06:12:53Z) - RAG-Driver: Generalisable Driving Explanations with Retrieval-Augmented In-Context Learning in Multi-Modal Large Language Model [22.25903116720301]
explainability plays a critical role in trustworthy autonomous decision-making.
Recent advancements in Multi-Modal Large Language models (MLLMs) have shown promising potential in enhancing the explainability as a driving agent.
We present RAG-Driver, a novel retrieval-augmented multi-modal large language model that leverages in-context learning for high-performance, explainable, and generalisable autonomous driving.
arXiv Detail & Related papers (2024-02-16T16:57:18Z) - DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton [44.26173742405563]
This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG)
DFA-RAG is a framework designed to enhance the capabilities of conversational agents using large language models (LLMs)
arXiv Detail & Related papers (2024-02-06T21:14:45Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
We propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online Vision-and-Language Navigation (VLN)
Our method obtains impressive performance gains on four popular benchmarks.
arXiv Detail & Related papers (2023-11-22T07:47:39Z) - Guideline Learning for In-context Information Extraction [29.062173997909028]
In-context Information Extraction (IE) has recently garnered attention in the research community.
We highlight a key reason for this shortfall: underspecified task description.
We propose a Guideline Learning framework for In-context IE which reflectively learns and follows guidelines.
arXiv Detail & Related papers (2023-10-08T08:25:16Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Natural Language based Context Modeling and Reasoning for Ubiquitous
Computing with Large Language Models: A Tutorial [35.743576799998564]
Large language models (LLMs) have become phenomenally surging, since 2018--two decades after introducing context-aware computing.
In this tutorial, we demonstrate the use of texts, prompts, and autonomous agents (AutoAgents) that enable LLMs to perform context modeling and reasoning.
arXiv Detail & Related papers (2023-09-24T00:15:39Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - AutoPrompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts [46.03503882865222]
AutoPrompt is an automated method to create prompts for a diverse set of tasks based on a gradient-guided search.
We show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning.
arXiv Detail & Related papers (2020-10-29T22:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.