Quantum Annealing Approach for the Optimal Real-time Traffic Control using QUBO
- URL: http://arxiv.org/abs/2403.09023v1
- Date: Thu, 14 Mar 2024 01:24:19 GMT
- Title: Quantum Annealing Approach for the Optimal Real-time Traffic Control using QUBO
- Authors: Amit Singh, Chun-Yu Lin, Chung-I Huang, Fang-Pang Lin,
- Abstract summary: Traffic congestion is one of the major issues in urban areas.
How to control the traffic flow to mitigate the congestion has been one of the central issues in transportation research.
- Score: 17.027096728412758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic congestion is one of the major issues in urban areas, particularly when traffic loads exceed the roads capacity, resulting in higher petrol consumption and carbon emissions as well as delays and stress for road users. In Asia, the traffic situation can be further deteriorated by road sharing of scooters. How to control the traffic flow to mitigate the congestion has been one of the central issues in transportation research. In this study, we employ a quantum annealing approach to optimize the traffic signals control at a real-life intersection with mixed traffic flows of vehicles and scooters. Considering traffic flow is a continuous and emerging phenomenon, we used quadratic unconstrained binary optimization (QUBO) formalism for traffic optimization, which has a natural equivalence to the Ising model and can be solved efficiently on the quantum annealers, quantum computers or digital annealers. In this article, we first applied the QUBO traffic optimization to artificially generated traffic for a simple intersection, and then we used real-time traffic data to simulate a real Dongda-Keyuan intersection with dedicated cars and scooter lanes, as well as mixed scooter and car lanes. We introduced two types of traffic light control systems for traffic optimization C-QUBO and QUBO. Our rigorous QUBO optimizations show that C-QUBO and QUBO outperform the commonly used fixed cycle method, with QUBO outperforming C-QUBO in some instances. It has been found that QUBO optimization significantly relieves traffic congestion for the unbalanced traffic volume. Furthermore, we found that dynamic changes in traffic light signal duration greatly reduce traffic congestion.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Deep Reinforcement Learning to Maximize Arterial Usage during Extreme
Congestion [4.934817254755007]
We propose a Deep Reinforcement Learning (DRL) approach to reduce traffic congestion on multi-lane freeways during extreme congestion.
Agent is trained to learn adaptive detouring strategies for congested freeway traffic.
Agent can improve average traffic speed by 21% when compared to no-action during steep congestion.
arXiv Detail & Related papers (2023-05-16T16:53:27Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.