論文の概要: Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery
- arxiv url: http://arxiv.org/abs/2403.09063v1
- Date: Thu, 14 Mar 2024 03:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:57:10.131151
- Title: Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery
- Title(参考訳): 3次元メッシュ回収のための分布・深さ対応変圧器
- Authors: Jerrin Bright, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, John Zelek,
- Abstract要約: 本稿では,エンド・ツー・エンド・エンドのトランスフォーマーアーキテクチャであるD2A-HMRを導入する。
提案手法は,特定のシナリオにおけるOODデータ処理における優れた性能を示す。
- 参考スコア(独自算出の注目度): 7.339380415551658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise Human Mesh Recovery (HMR) with in-the-wild data is a formidable challenge and is often hindered by depth ambiguities and reduced precision. Existing works resort to either pose priors or multi-modal data such as multi-view or point cloud information, though their methods often overlook the valuable scene-depth information inherently present in a single image. Moreover, achieving robust HMR for out-of-distribution (OOD) data is exceedingly challenging due to inherent variations in pose, shape and depth. Consequently, understanding the underlying distribution becomes a vital subproblem in modeling human forms. Motivated by the need for unambiguous and robust human modeling, we introduce Distribution and depth-aware human mesh recovery (D2A-HMR), an end-to-end transformer architecture meticulously designed to minimize the disparity between distributions and incorporate scene-depth leveraging prior depth information. Our approach demonstrates superior performance in handling OOD data in certain scenarios while consistently achieving competitive results against state-of-the-art HMR methods on controlled datasets.
- Abstract(参考訳): in-the-wildデータを用いた高精度ヒューマンメッシュリカバリ(HMR)は、深刻な課題であり、しばしば深さの曖昧さと精度の低下によって妨げられる。
既存の作業では、先行データやマルチビューやポイントクラウド情報といったマルチモーダルデータを利用するが、それらの手法は、1つの画像に本質的に存在する貴重なシーン深度情報を見落としていることが多い。
さらに,オフ・オブ・ディストリビューション(OOD)データに対するロバストなHMRの実現は,ポーズ,形状,深さに固有の変化があるため,極めて困難である。
その結果、人間の形態をモデル化する上で、基礎となる分布を理解することは重要なサブプロブレムとなる。
不明瞭でロバストな人体モデリングの必要性から,分布と深度を考慮した人体メッシュリカバリ(D2A-HMR)を導入し,分布間の相違を最小化し,事前の深度情報を活用したシーンディープスを組み込んだエンド・ツー・エンド・トランスフォーマーアーキテクチャを提案する。
提案手法は,特定のシナリオにおけるOODデータ処理における優れた性能を示すとともに,制御されたデータセット上での最先端HMR法に対して一貫して競合する結果が得られることを示す。
関連論文リスト
- DiHuR: Diffusion-Guided Generalizable Human Reconstruction [51.31232435994026]
一般化可能なヒト3次元再構成のための拡散誘導モデルであるDiHuRを導入し,スパース・ミニマル・オーバーラップ画像からのビュー合成について述べる。
提案手法は, 一般化可能なフィードフォワードモデルと2次元拡散モデルとの2つのキー前処理をコヒーレントな方法で統合する。
論文 参考訳(メタデータ) (2024-11-16T03:52:23Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMeshは、人間のメッシュリカバリを排除した革新的なフレームワークである。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルに埋め込まれた対象構造と空間的関係について、より深い拡散に乗じる。
論文 参考訳(メタデータ) (2024-04-01T18:59:13Z) - UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human
Generation [59.77275587857252]
総合的な人間のデータセットは、必然的に、局所的な部分についての不十分で低解像度な情報を持っている。
本稿では,高解像度な人為的生成モデルを共同で学習するために,様々な解像度画像を用いたマルチソースデータセットを提案する。
論文 参考訳(メタデータ) (2023-09-25T17:58:46Z) - Distribution-Aligned Diffusion for Human Mesh Recovery [16.64567393672489]
本稿では,人間のメッシュ回復のための拡散に基づくアプローチを提案する。
本稿では,メッシュ回復を逆拡散過程とするHuman Mesh Diffusion(HMDiff)フレームワークを提案する。
提案手法は, 広く使用されている3つのデータセットに対して, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-08-25T13:29:31Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
既存のソリューションは通常、新しい設定への一般化性能の低下に悩まされる。
マルチビューヒューマンメッシュリカバリのためのシミュレーションに基づく新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-12-10T06:28:29Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
本稿では,現実世界の屋内環境におけるラベル付きデータの不十分,あるいは不可能,といった主な課題について論じる。
MMISM (Multi-modality input Multi-task output Indoor Scene Understanding Model) について述べる。
MMISMは、RGB画像だけでなく、スパースライダーポイントを入力と3Dオブジェクト検出、深さ完了、人間のポーズ推定、セマンティックセグメンテーションを出力タスクとみなしている。
MMISMはシングルタスクモデルよりも同等かそれ以上の性能を示す。
論文 参考訳(メタデータ) (2022-09-27T04:49:19Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
自己教師付きヒューマンメッシュリカバリ手法は、3Dアノテーション付きベンチマークデータセットの可用性と多様性が制限されているため、一般化性が低い。
頑健だがスパースな表現(2Dキーポイント)からの相補的情報を利用した相互表現アライメントを提案する。
この適応的相互表現アライメントは、偏差から明示的に学習し、相補的な情報(疎表現からの豊かさと密表現からの堅牢さ)をキャプチャする。
論文 参考訳(メタデータ) (2022-09-10T04:47:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Unsupervised Domain Adaptation in the Dissimilarity Space for Person
Re-identification [11.045405206338486]
そこで本稿では,ペア距離の整合性を実現するために,D-MMD(Dissimilarity-based Maximum Mean Discrepancy)の新たな損失を提案する。
3つの挑戦的なベンチマークデータセットによる実験結果から、D-MMDの損失は、ソースとドメインの分布がよりよくなるにつれて減少することが示された。
論文 参考訳(メタデータ) (2020-07-27T22:10:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。