Monte Carlo Spin Simulations of Magnetic Noise -- The Search for Pivoting
- URL: http://arxiv.org/abs/2403.09078v1
- Date: Thu, 14 Mar 2024 03:51:53 GMT
- Title: Monte Carlo Spin Simulations of Magnetic Noise -- The Search for Pivoting
- Authors: D. L. Mickelsen, Ruqian Wu, Clare C. Yu,
- Abstract summary: Superconducting quantum interference devices (SQUIDs) show great promise as quantum bits (qubits) but continue to be hindered by flux noise.
Experiments find that the noise power spectra versus frequency at different temperatures pivot about or cross at a common point for each SQUID.
We present the results of our Monte Carlo simulations of various spin systems on 2D lattices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum interference devices (SQUIDs) show great promise as quantum bits (qubits) but continue to be hindered by flux noise. The flux noise power spectra of SQUIDs go as $1/f^\alpha$, where $\alpha$ is the temperature-dependent noise exponent. Experiments find $0.5 \lesssim \alpha \lesssim 1$. Furthermore, experiments find that the noise power spectra versus frequency at different temperatures pivot about or cross at a common point for each SQUID. To try to better understand the results and motivated by experimental evidence that magnetic moments on the surface of SQUIDS produce flux noise, we present the results of our Monte Carlo simulations of various spin systems on 2D lattices. We find that only spin glasses produce $\alpha \sim 1$ at low temperature. We find that aliasing of the noise power spectra at high frequencies can lead to spectral pivoting if it is in proximity to a knee at a slightly lower frequency. We show that the pivot frequency depends on the method of site selection and how often the magnetization is recorded. The spectral pivoting that occurs in our simulations is due to aliasing and does not explain the spectral pivoting of experiments.
Related papers
- Critical fluctuation and noise spectra in two-dimensional Fe$_{3}$GeTe$_{2}$ magnets [24.442543023868097]
Critical fluctuations play a fundamental role in determining the spin orders for low-dimensional quantum materials.
We employ the quantum decoherence imaging technique utilizing nitrogen-vacancy centers in diamond to explore the critical magnetic fluctuations.
arXiv Detail & Related papers (2024-06-30T10:18:08Z) - Anomalous noise spectra in a spin-exchange-relaxation-free alkali-metal vapor [0.0]
We perform spin-noise spectroscopy on an unpolarized $87mathrmRb$ vapor in the spin-exchange-relaxation-free regime.
We observe noise spectral distributions that deviate strongly from Lorentzian models.
We discuss implications for quantum sensing and absolute noise calibration in spin-squeezing and entanglement detection.
arXiv Detail & Related papers (2023-07-31T17:24:57Z) - Effects of Temperature Fluctuations on Charge Noise in Quantum Dot
Qubits [0.0]
Silicon quantum dot qubits show great promise but suffer from charge noise with a 1/falpha spectrum, where f is frequency and alpha lesssim 1.
We find that noise with a $1/falpha$ spectrum with $alpha lesssim 1 down to low frequencies, the duration of temperature fluctuations must be comparable to the inverse of the lowest frequency at which the noise is measured.
We conclude that temperature fluctuations in a 2DEG sub-bath would require an unphysically long duration to be consistent with experimental measurements of 1/f-like charge noise in quantum dots
arXiv Detail & Related papers (2023-05-23T20:45:07Z) - Model for 1/f Flux noise in Superconducting Aluminum Devices: Impact of
External Magnetic Fields [0.0]
Superconducting quantum interference devices (SQUIDs) and related circuits made of aluminum display $1/omega$ flux noise.
An external magnetic field in the $10-100$G range changed the noise to a single Lorentzian peaked at $omega=0$.
The model shows that application of an external magnetic field can be used to reduce the impact of flux noise in qubits.
arXiv Detail & Related papers (2023-02-23T20:26:56Z) - Evolution of $1/f$ Flux Noise in Superconducting Qubits with Weak
Magnetic Fields [37.41181188499616]
The origin of $1/f$ magnetic flux noise in superconducting circuits has remained an open question for several decades.
Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence.
We apply weak in-plane magnetic fields to a capacitively-shunted flux qubit and study the flux-noise-limited qubit dephasing.
arXiv Detail & Related papers (2023-01-18T22:26:08Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.