論文の概要: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning
- arxiv url: http://arxiv.org/abs/2403.09100v1
- Date: Thu, 14 Mar 2024 04:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:47:12.298115
- Title: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning
- Title(参考訳): 自己蛍光顕微鏡とディープラーニングを用いたラベルフリー組織中のアミロイド鉱床の仮想複屈折イメージングと組織染色
- Authors: Xilin Yang, Bijie Bai, Yijie Zhang, Musa Aydin, Sahan Yoruc Selcuk, Zhen Guo, Gregory A. Fishbein, Karine Atlan, William Dean Wallace, Nir Pillar, Aydogan Ozcan,
- Abstract要約: コンゴ赤染色(コンゴ赤し、英: Congo red stain)は、組織におけるアミロイド鉱床の可視化のための金標準化学染色である。
単一のトレーニングされたニューラルネットワークは、ラベルのない組織セクションの自己蛍光画像を、明視野および偏光顕微鏡等価画像に変換することができる。
- 参考スコア(独自算出の注目度): 4.074521061733491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systemic amyloidosis is a group of diseases characterized by the deposition of misfolded proteins in various organs and tissues, leading to progressive organ dysfunction and failure. Congo red stain is the gold standard chemical stain for the visualization of amyloid deposits in tissue sections, as it forms complexes with the misfolded proteins and shows a birefringence pattern under polarized light microscopy. However, Congo red staining is tedious and costly to perform, and prone to false diagnoses due to variations in the amount of amyloid, staining quality and expert interpretation through manual examination of tissue under a polarization microscope. Here, we report the first demonstration of virtual birefringence imaging and virtual Congo red staining of label-free human tissue to show that a single trained neural network can rapidly transform autofluorescence images of label-free tissue sections into brightfield and polarized light microscopy equivalent images, matching the histochemically stained versions of the same samples. We demonstrate the efficacy of our method with blind testing and pathologist evaluations on cardiac tissue where the virtually stained images agreed well with the histochemically stained ground truth images. Our virtually stained polarization and brightfield images highlight amyloid birefringence patterns in a consistent, reproducible manner while mitigating diagnostic challenges due to variations in the quality of chemical staining and manual imaging processes as part of the clinical workflow.
- Abstract(参考訳): 全身性アミロイドーシス(systemic amyloidosis)は、様々な臓器や組織に折りたたみタンパク質が沈着し、進行性臓器機能障害と不全を引き起こす疾患群である。
コンゴ赤染色(コンゴ赤し、英: Congo red stain)は、組織断面におけるアミロイド鉱床の可視化のための金標準の化学染色であり、これらタンパク質との複合体を形成し、偏光顕微鏡下で複屈折パターンを示す。
しかし、コンゴの赤色染色は面倒でコストがかかるため、偏光顕微鏡で組織を手動で検査することで、アミロイドの量、染色品質、専門的解釈のばらつきによる誤診断が生じる傾向にある。
本稿では, ラベルフリーヒト組織における仮想複屈折画像と仮想コンゴ赤外染色の初回デモンストレーションを行い, ラベルフリー組織断面の自己蛍光画像が, 同じ試料の組織化学的に染色されたバージョンと一致して, 蛍光画像の明るさと偏光顕微鏡的等価画像に迅速に変換可能であることを示す。
組織化学的に染色された地中真実像と仮想染色画像が一致した心組織に対して, ブラインドテストおよび病理組織学的評価で本法の有効性を実証した。
我々の仮想染色偏光と明るい視野画像は、臨床ワークフローの一部として化学染色や手動画像の画質の変動による診断上の課題を軽減しつつ、一貫した再現性のある方法でアミロイド複屈折パターンを強調させる。
関連論文リスト
- Single color digital H&E staining with In-and-Out Net [0.8271394038014485]
本稿では,仮想染色タスクに特化して設計された新しいネットワークIn-and-Out Netを提案する。
我々はGAN(Generative Adversarial Networks)に基づいて,反射共焦点顕微鏡(RCM)画像からヘマトキシリンおよびエオシン染色画像へ効率的に変換する。
論文 参考訳(メタデータ) (2024-05-22T01:17:27Z) - Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology [0.11728348229595655]
仮想組織染色のための自律的品質・幻覚評価法(AQuA)を提案する。
AQuAは、許容され、受け入れられない事実上の染色組織像を検出すると、99.8%の精度を達成する。
論文 参考訳(メタデータ) (2024-04-29T06:32:28Z) - Automated Whole Slide Imaging for Label-Free Histology using Photon
Absorption Remote Sensing Microscopy [0.0]
現在の染色法と高度なラベリング法は、しばしば破壊的であり、相互に相容れない。
最初の透過モード光子リモートセンシング顕微鏡を用いたラベルフリー組織学プラットフォームを提案する。
論文 参考訳(メタデータ) (2023-04-26T12:36:19Z) - Digital staining in optical microscopy using deep learning -- a review [47.86254766044832]
デジタル染色は、光学的コントラストから実際の染色の確立された生化学的コントラストへの翻訳に近代的な深層学習を利用するための有望な概念として登場した。
この分野の現状を詳細に分析し、優れた実践方法を提案し、落とし穴と課題を特定し、将来の実装やアプリケーションに向けた将来的な進歩を仮定する。
論文 参考訳(メタデータ) (2023-03-14T15:23:48Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
網膜画像の画質は、眼の病変や不完全な画像処理のために臨床的に不満足であることが多い。
網膜画像における最も難しい品質劣化問題の1つは、一様でない照明である。
我々はNuI-Goと呼ばれる網膜画像に対する均一でない照明除去ネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-07T04:31:33Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Pix2Pix-based Stain-to-Stain Translation: A Solution for Robust Stain
Normalization in Histopathology Images Analysis [5.33024001730262]
Stain-to-Stain Translation (STST) はヘマトキシリンおよびエオシン染色組織像の正常化に用いられている。
条件付きジェネレータ対向ネットワーク(cGAN)を用いたピクス2ピクセルフレームワークに基づく翻訳処理を行う。
論文 参考訳(メタデータ) (2020-02-03T11:19:01Z) - Digital synthesis of histological stains using micro-structured and
multiplexed virtual staining of label-free tissue [2.446672595462589]
ラベルのない組織を用いて仮想的な画像を生成するディープ・ラーニング・ベース・フレームワークを提案する。
無ラベル腎組織切片を用いて,この仮想染色ネットワークを訓練し,盲目的にテストした。
論文 参考訳(メタデータ) (2020-01-20T22:14:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。