論文の概要: Single color digital H&E staining with In-and-Out Net
- arxiv url: http://arxiv.org/abs/2405.13278v2
- Date: Fri, 22 Nov 2024 16:59:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:13.158457
- Title: Single color digital H&E staining with In-and-Out Net
- Title(参考訳): イン・アンド・アウトネットを用いた単色デジタルH&E染色
- Authors: Mengkun Chen, Yen-Tung Liu, Fadeel Sher Khan, Matthew C. Fox, Jason S. Reichenberg, Fabiana C. P. S. Lopes, Katherine R. Sebastian, Mia K. Markey, James W. Tunnell,
- Abstract要約: 本稿では,仮想染色タスクに特化して設計された新しいネットワークIn-and-Out Netを提案する。
我々はGAN(Generative Adversarial Networks)に基づいて,反射共焦点顕微鏡(RCM)画像からヘマトキシリンおよびエオシン染色画像へ効率的に変換する。
- 参考スコア(独自算出の注目度): 0.8271394038014485
- License:
- Abstract: Virtual staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, virtual staining offers an efficient and low infrastructure alternative. Leveraging microscopy-based techniques, such as confocal microscopy, researchers can expedite tissue analysis without the need for physical sectioning. However, interpreting grayscale or pseudo-color microscopic images remains a challenge for pathologists and surgeons accustomed to traditional histologically stained images. To fill this gap, various studies explore digitally simulating staining to mimic targeted histological stains. This paper introduces a novel network, In-and-Out Net, specifically designed for virtual staining tasks. Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin (H&E) stained images. We enhance nuclei contrast in RCM images using aluminum chloride preprocessing for skin tissues. Training the model with virtual H\&E labels featuring two fluorescence channels eliminates the need for image registration and provides pixel-level ground truth. Our contributions include proposing an optimal training strategy, conducting a comparative analysis demonstrating state-of-the-art performance, validating the model through an ablation study, and collecting perfectly matched input and ground truth images without registration. In-and-Out Net showcases promising results, offering a valuable tool for virtual staining tasks and advancing the field of histological image analysis.
- Abstract(参考訳): 仮想染色は、静止していないまたは異なる染色された画像から染色された画像をデジタル的に生成することにより、従来の染色手順を合理化する。
従来の染色法は時間を要する化学プロセスを含むが、仮想染色は効率的で低インフラの代替となる。
共焦点顕微鏡のような顕微鏡ベースの技術を利用して、研究者は物理的切断を必要とせずに組織分析を迅速化することができる。
しかし、グレースケールや擬似彩色画像の解釈は、病理学者や外科医が従来の組織学的に染色された画像に慣れる上での課題である。
このギャップを埋めるために、様々な研究が標的の組織染色を模倣するためにデジタル的に染色をシミュレートしている。
本稿では,仮想染色タスクに特化して設計された新しいネットワークIn-and-Out Netを提案する。
本モデルは,GAN(Generative Adversarial Networks)に基づいて,反射共焦点顕微鏡(RCM)画像からヘマトキシリン,エオシン(H&E)染色画像へ効率よく変換する。
皮膚組織に対する塩化アルミニウム前処理によるRCM画像の核コントラストを高める。
2つの蛍光チャネルを備えた仮想H\&Eラベルでモデルをトレーニングすることは、画像登録の必要性を排除し、ピクセルレベルの地上真実を提供する。
コントリビューションには、最適トレーニング戦略の提案、最先端のパフォーマンスを示す比較分析、アブレーション研究によるモデルの検証、完全一致する入力画像と基底真実画像の登録なしの収集などが含まれる。
In-and-Out Netは有望な成果を示し、仮想染色タスクのための貴重なツールを提供し、組織像解析の分野を前進させる。
関連論文リスト
- Super-resolved virtual staining of label-free tissue using diffusion models [2.8661150986074384]
本研究では,ブラウン橋プロセスを用いた拡散モデルに基づく超解像仮想染色手法を提案する。
提案手法は,新しいサンプリング手法を拡散モデルに基づく画像推論プロセスに統合する。
ラベルのないヒト肺組織サンプルの低分解能自動蛍光画像に盲目的に適用し、拡散に基づく超高分解能仮想染色モデルは、従来の解像度、構造的類似性、知覚精度のアプローチよりも一貫して優れていた。
論文 参考訳(メタデータ) (2024-10-26T04:31:17Z) - Generating Seamless Virtual Immunohistochemical Whole Slide Images with Content and Color Consistency [2.063403009505468]
免疫組織化学(IHC)染色は、病理医の医療画像解析において重要な役割を担い、様々な疾患の診断に重要な情報を提供する。
ヘマトキシリンとエオシン(H&E)を染色した全スライド画像(WSI)の仮想染色により、高価な物理的染色プロセスなしで他の有用なICC染色を自動生成することができる。
タイルワイズ処理に基づく現在の仮想WSI生成法は、タイル境界における内容、テクスチャ、色の不整合に悩まされることが多い。
GANモデルを拡張した新しい一貫したWSI合成ネットワークCC-WSI-Netを提案する。
論文 参考訳(メタデータ) (2024-10-01T21:02:16Z) - Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology [0.11728348229595655]
仮想組織染色のための自律的品質・幻覚評価法(AQuA)を提案する。
AQuAは、許容され、受け入れられない事実上の染色組織像を検出すると、99.8%の精度を達成する。
論文 参考訳(メタデータ) (2024-04-29T06:32:28Z) - Digital staining in optical microscopy using deep learning -- a review [47.86254766044832]
デジタル染色は、光学的コントラストから実際の染色の確立された生化学的コントラストへの翻訳に近代的な深層学習を利用するための有望な概念として登場した。
この分野の現状を詳細に分析し、優れた実践方法を提案し、落とし穴と課題を特定し、将来の実装やアプリケーションに向けた将来的な進歩を仮定する。
論文 参考訳(メタデータ) (2023-03-14T15:23:48Z) - Unsupervised Deep Digital Staining For Microscopic Cell Images Via
Knowledge Distillation [46.006296303296544]
大規模にステンド/アンステンディングされたセルイメージペアを実際に取得することは困難である。
本稿では,セル画像のデジタル染色のための新しい教師なしディープラーニングフレームワークを提案する。
提案手法は, より正確な位置と形状の染色画像を生成することができることを示す。
論文 参考訳(メタデータ) (2023-03-03T16:26:38Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Virtual stain transfer in histology via cascaded deep neural networks [2.309018557701645]
ケースドディープニューラルネットワーク(C-DNN)による仮想染色伝達フレームワークの実証を行った。
C-DNNは、入力として1つの染色タイプのみを取り込んで別の染色タイプの画像をデジタル出力する単一のニューラルネットワーク構造とは異なり、まず仮想染色を使用して、自己蛍光顕微鏡画像をH&Eに変換する。
我々は,H&E染色組織像を仮想PAS( periodic acid-Schiff)染色に変換することに成功した。
論文 参考訳(メタデータ) (2022-07-14T00:43:18Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Stain Style Transfer of Histopathology Images Via Structure-Preserved
Generative Learning [31.254432319814864]
本研究では,SSIM-GANとDSCSI-GANの2つのステンスタイル転送モデルを提案する。
学習における構造保存指標と補助診断ネットのフィードバックを協調することにより、医療関連情報をカラー正規化画像に保存する。
論文 参考訳(メタデータ) (2020-07-24T15:30:19Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。