AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
- URL: http://arxiv.org/abs/2403.09113v2
- Date: Sun, 17 Mar 2024 17:55:47 GMT
- Title: AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
- Authors: Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, Pengtao Xie,
- Abstract summary: Low-rank adaptation (LoRA) finetunes low-rank incremental update matrices on top of frozen pretrained weights.
We introduce AutoLoRA, a framework for automatically identifying the optimal rank of each LoRA layer.
Our experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA.
- Score: 31.975038164401404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pretraining followed by task-specific finetuning has achieved great success in various NLP tasks. Since finetuning all parameters of large pretrained models poses substantial computational and memory challenges, several efficient finetuning methods have been developed. Among them, low-rank adaptation (LoRA), which finetunes low-rank incremental update matrices on top of frozen pretrained weights, has proven particularly effective. Nonetheless, LoRA's uniform rank assignment across all layers, along with its reliance on an exhaustive search to find the best rank, leads to high computation costs and suboptimal finetuning performance. To address these limitations, we introduce AutoLoRA, a meta learning based framework for automatically identifying the optimal rank of each LoRA layer. AutoLoRA associates each rank-1 matrix in a low-rank update matrix with a selection variable, which determines whether the rank-1 matrix should be discarded. A meta learning based method is developed to learn these selection variables. The optimal rank is determined by thresholding the values of these variables. Our comprehensive experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA.
Related papers
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation [13.585425242072173]
Most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA)
We propose to enhance LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition on minibatches of activation.
We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning.
arXiv Detail & Related papers (2024-10-09T17:59:06Z) - SARA: Singular-Value Based Adaptive Low-Rank Adaption [4.135688713311511]
LoRA as a parameter-efficient fine-tuning(PEFT) method is widely used for not adding inference overhead.
In this work, we first analyze the relationship between the performance of different layers and their ranks using SVD.
Based on this, we design the Singular-Value Based Adaptive Low-Rank Adaption(SARA)
arXiv Detail & Related papers (2024-08-06T16:39:42Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models [34.1111413429869]
BiLoRA is an overfitting-alleviating fine-tuning approach based on bi-level optimization (BLO)
tested on ten datasets covering natural language understanding and generation tasks.
arXiv Detail & Related papers (2024-03-19T14:11:20Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.