BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models
- URL: http://arxiv.org/abs/2403.13037v1
- Date: Tue, 19 Mar 2024 14:11:20 GMT
- Title: BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models
- Authors: Rushi Qiang, Ruiyi Zhang, Pengtao Xie,
- Abstract summary: BiLoRA is an overfitting-alleviating fine-tuning approach based on bi-level optimization (BLO)
tested on ten datasets covering natural language understanding and generation tasks.
- Score: 34.1111413429869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank adaptation (LoRA) is a popular method for fine-tuning large-scale pre-trained models in downstream tasks by learning low-rank incremental matrices. Though LoRA and its variants effectively reduce the number of trainable parameters compared to full fine-tuning methods, they often overfit training data, resulting in sub-optimal generalization on test data. To address this problem, we introduce BiLoRA, an overfitting-alleviating fine-tuning approach based on bi-level optimization (BLO). BiLoRA employs pseudo singular value decomposition to parameterize low-rank incremental matrices and splits the training of pseudo singular vectors and values across two different subsets of training data. This division, embedded within separate levels of the BLO framework, mitigates the risk of overfitting to a single dataset. Tested on ten datasets covering natural language understanding and generation tasks and applied to various well-known large pre-trained models, BiLoRA significantly outperforms LoRA methods and other fine-tuning approaches, with similar amounts of trainable parameters.
Related papers
- Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SARA: Singular-Value Based Adaptive Low-Rank Adaption [4.135688713311511]
LoRA as a parameter-efficient fine-tuning(PEFT) method is widely used for not adding inference overhead.
In this work, we first analyze the relationship between the performance of different layers and their ranks using SVD.
Based on this, we design the Singular-Value Based Adaptive Low-Rank Adaption(SARA)
arXiv Detail & Related papers (2024-08-06T16:39:42Z) - Bayesian-LoRA: LoRA based Parameter Efficient Fine-Tuning using Optimal Quantization levels and Rank Values trough Differentiable Bayesian Gates [21.811889512977924]
It is a common practice in natural language processing to pre-train a single model and then fine-tune it for downstream tasks.
B-LoRA is able to fine-tune a pre-trained model on a specific downstream task, finding the optimal rank values and quantization levels for every low-rank matrix.
B-LoRA performs on par with or better than the baselines while reducing the total number of bit operations by roughly 70%.
arXiv Detail & Related papers (2024-06-18T20:26:30Z) - AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning [31.975038164401404]
Low-rank adaptation (LoRA) finetunes low-rank incremental update matrices on top of frozen pretrained weights.
We introduce AutoLoRA, a framework for automatically identifying the optimal rank of each LoRA layer.
Our experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA.
arXiv Detail & Related papers (2024-03-14T05:29:35Z) - ConvLoRA and AdaBN based Domain Adaptation via Self-Training [4.006331916849688]
We propose Convolutional Low-Rank Adaptation (ConvLoRA) for multi-target domain adaptation.
ConvLoRA freezes pre-trained model weights, adds trainable low-rank decomposition matrices to convolutional layers, and backpropagates the gradient.
Our method has fewer trainable parameters and performs better or on-par with large independent fine-tuned networks.
arXiv Detail & Related papers (2024-02-07T15:43:50Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.