Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation
- URL: http://arxiv.org/abs/2403.09136v3
- Date: Wed, 09 Oct 2024 00:06:37 GMT
- Title: Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation
- Authors: Lipei Zhang, Yanqi Cheng, Lihao Liu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero,
- Abstract summary: We propose a novel approach that designs brain tumour growth Partial Differential Equation (PDE) models as a regularisation with deep learning.
Our method introduces tumour growth PDE models directly into the segmentation process, improving accuracy and robustness, especially in data-scarce scenarios.
We demonstrate the effectiveness of our framework through extensive experiments on the BraTS 2023 dataset.
- Score: 10.466349398419846
- License:
- Abstract: Recent advances in deep learning have significantly improved brain tumour segmentation techniques; however, the results still lack confidence and robustness as they solely consider image data without biophysical priors or pathological information. Integrating biophysics-informed regularisation is one effective way to change this situation, as it provides an prior regularisation for automated end-to-end learning. In this paper, we propose a novel approach that designs brain tumour growth Partial Differential Equation (PDE) models as a regularisation with deep learning, operational with any network model. Our method introduces tumour growth PDE models directly into the segmentation process, improving accuracy and robustness, especially in data-scarce scenarios. This system estimates tumour cell density using a periodic activation function. By effectively integrating this estimation with biophysical models, we achieve better capture of tumour characteristics. This approach not only aligns the segmentation closer to actual biological behaviour but also strengthens the model's performance under limited data conditions. We demonstrate the effectiveness of our framework through extensive experiments on the BraTS 2023 dataset, showcasing significant improvements in both precision and reliability of tumour segmentation.
Related papers
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
We introduce a novel method that integrates data-driven and physics-based cost functions.
We propose a unique discretization scheme that quantifies how well the learned distributions of tumor and brain tissues adhere to their respective growth and elasticity equations.
arXiv Detail & Related papers (2024-09-30T15:36:14Z) - Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques [3.495246564946556]
This paper introduces a methodology that combines automated image augmentation selection (RandAugment) with search strategies (Tree-based Parzen Estimator)
We empirically validate our approach on breast cancer histology slides, focusing on the segmentation of cancer cells.
Our results show that the proposed methodology leads to segmentation models that are more resilient to variations in histology slides.
arXiv Detail & Related papers (2023-11-18T13:08:09Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
Inaccurate identification of brain tumors can significantly diminish life expectancy.
This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors.
Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively.
arXiv Detail & Related papers (2023-05-22T09:08:59Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.