Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques
- URL: http://arxiv.org/abs/2311.11065v1
- Date: Sat, 18 Nov 2023 13:08:09 GMT
- Title: Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques
- Authors: Leon Hamnett, Mary Adewunmi, Modinat Abayomi, Kayode Raheem, and Fahad
Ahmed
- Abstract summary: This paper introduces a methodology that combines automated image augmentation selection (RandAugment) with search strategies (Tree-based Parzen Estimator)
We empirically validate our approach on breast cancer histology slides, focusing on the segmentation of cancer cells.
Our results show that the proposed methodology leads to segmentation models that are more resilient to variations in histology slides.
- Score: 3.495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer remains a critical global health challenge, necessitating early
and accurate detection for effective treatment. This paper introduces a
methodology that combines automated image augmentation selection (RandAugment)
with search optimisation strategies (Tree-based Parzen Estimator) to identify
optimal values for the number of image augmentations and the magnitude of their
associated augmentation parameters, leading to enhanced segmentation
performance. We empirically validate our approach on breast cancer histology
slides, focusing on the segmentation of cancer cells. A comparative analysis of
state-of-the-art transformer-based segmentation models is conducted, including
SegFormer, PoolFormer, and MaskFormer models, to establish a comprehensive
baseline, before applying the augmentation methodology. Our results show that
the proposed methodology leads to segmentation models that are more resilient
to variations in histology slides whilst maintaining high levels of
segmentation performance, and show improved segmentation of the tumour class
when compared to previous research. Our best result after applying the
augmentations is a Dice Score of 84.08 and an IoU score of 72.54 when
segmenting the tumour class. The primary contribution of this paper is the
development of a methodology that enhances segmentation performance while
ensuring model robustness to data variances. This has significant implications
for medical practitioners, enabling the development of more effective machine
learning models for clinical applications to identify breast cancer cells from
histology slides. Furthermore, the codebase accompanying this research will be
released upon publication. This will facilitate further research and
application development based on our methodology, thereby amplifying its
impact.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation [1.6321136843816972]
This study critically evaluates the limitations of existing generative-AI based frameworks for pancreatic tumor segmentation.
We conduct a series of experiments to investigate the impact of synthetic textittumor size and textitboundary definition precision on model performance.
Our findings demonstrate that: (1) strategically selecting a combination of synthetic tumor sizes is crucial for optimal segmentation outcomes, and (2) generating synthetic tumors with precise boundaries significantly improves model accuracy.
arXiv Detail & Related papers (2024-07-27T15:38:07Z) - Optimizing Lymphocyte Detection in Breast Cancer Whole Slide Imaging through Data-Centric Strategies [0.2796197251957244]
We develop a data-centric optimization pipeline that attains great lymphocyte detection performance using an off-the-shelf YOLOv5 model.
We showcase the interest of this approach in the context of breast cancer where our strategies lead to good lymphocyte detection performances.
arXiv Detail & Related papers (2024-05-22T14:59:50Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
We propose a novel approach that designs brain tumour growth Partial Differential Equation (PDE) models as a regularisation with deep learning.
Our method introduces tumour growth PDE models directly into the segmentation process, improving accuracy and robustness, especially in data-scarce scenarios.
We demonstrate the effectiveness of our framework through extensive experiments on the BraTS 2023 dataset.
arXiv Detail & Related papers (2024-03-14T07:21:46Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.