An Optimized Ensemble Deep Learning Model For Brain Tumor Classification
- URL: http://arxiv.org/abs/2305.12844v2
- Date: Mon, 6 May 2024 15:16:49 GMT
- Title: An Optimized Ensemble Deep Learning Model For Brain Tumor Classification
- Authors: Md. Alamin Talukder, Md. Manowarul Islam, Md Ashraf Uddin,
- Abstract summary: Inaccurate identification of brain tumors can significantly diminish life expectancy.
This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors.
Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively.
- Score: 3.072340427031969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumors present a grave risk to human life, demanding precise and timely diagnosis for effective treatment. Inaccurate identification of brain tumors can significantly diminish life expectancy, underscoring the critical need for precise diagnostic methods. Manual identification of brain tumors within vast Magnetic Resonance Imaging (MRI) image datasets is arduous and time-consuming. Thus, the development of a reliable deep learning (DL) model is essential to enhance diagnostic accuracy and ultimately save lives. This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors. Our methodology includes meticulous preprocessing, reconstruction of TL architectures, fine-tuning, and ensemble DL models utilizing weighted optimization techniques such as Genetic Algorithm-based Weight Optimization (GAWO) and Grid Search-based Weight Optimization (GSWO). Experimentation is conducted on the Figshare Contrast-Enhanced MRI (CE-MRI) brain tumor dataset, comprising 3064 images. Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively. Notably, GSWO demonstrates superior accuracy, averaging 99.76\% accuracy across five folds on the Figshare CE-MRI brain tumor dataset. The comparative analysis highlights the significant performance enhancement of our proposed model over existing counterparts. In conclusion, our optimized deep ensemble model exhibits exceptional accuracy in swiftly classifying brain tumors. Furthermore, it has the potential to assist neurologists and clinicians in making accurate and immediate diagnostic decisions.
Related papers
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms.
Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images.
The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%.
arXiv Detail & Related papers (2022-06-08T14:29:06Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
arXiv Detail & Related papers (2022-04-26T13:20:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.