論文の概要: Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation
- arxiv url: http://arxiv.org/abs/2408.05938v2
- Date: Tue, 21 Jan 2025 20:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:47.340811
- Title: Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation
- Title(参考訳): 深部幾何学的モーメントはテキストから3次元生成における形状整合性を促進する
- Authors: Utkarsh Nath, Rajeev Goel, Eun Som Jeon, Changhoon Kim, Kyle Min, Yezhou Yang, Yingzhen Yang, Pavan Turaga,
- Abstract要約: MT3Dは高忠実度3Dオブジェクトを利用して視点バイアスを克服するテキスト・ツー・3D生成モデルである。
3Dアセットから幾何学的詳細を取り入れることで、MT3Dは多様で幾何学的に一貫したオブジェクトを作成することができる。
- 参考スコア(独自算出の注目度): 27.43973967994717
- License:
- Abstract: To address the data scarcity associated with 3D assets, 2D-lifting techniques such as Score Distillation Sampling (SDS) have become a widely adopted practice in text-to-3D generation pipelines. However, the diffusion models used in these techniques are prone to viewpoint bias and thus lead to geometric inconsistencies such as the Janus problem. To counter this, we introduce MT3D, a text-to-3D generative model that leverages a high-fidelity 3D object to overcome viewpoint bias and explicitly infuse geometric understanding into the generation pipeline. Firstly, we employ depth maps derived from a high-quality 3D model as control signals to guarantee that the generated 2D images preserve the fundamental shape and structure, thereby reducing the inherent viewpoint bias. Next, we utilize deep geometric moments to ensure geometric consistency in the 3D representation explicitly. By incorporating geometric details from a 3D asset, MT3D enables the creation of diverse and geometrically consistent objects, thereby improving the quality and usability of our 3D representations. Project page and code: https://moment-3d.github.io/
- Abstract(参考訳): 3Dアセットに関連するデータ不足に対処するため、SDS(Score Distillation Sampling)のような2Dリフト技術がテキストから3D生成パイプラインにおいて広く採用されている。
しかし、これらの手法で用いられる拡散モデルは、視点バイアスに傾向があり、従ってヤヌス問題のような幾何学的不整合をもたらす。
これに対応するために,高忠実度3Dオブジェクトを利用したテキストから3D生成モデルMT3Dを導入し,視点バイアスを克服し,幾何学的理解を生成パイプラインに明示的に注入する。
まず,高品質な3Dモデルから得られた深度マップを制御信号とし,生成した2D画像が基本形状や構造を保っていることを保証する。
次に,3次元表現における幾何学的整合性を明確にするために,深部幾何学的モーメントを利用する。
MT3Dは3Dアセットから幾何学的詳細を取り入れることで、多様で幾何学的に一貫したオブジェクトの作成を可能にし、3D表現の品質とユーザビリティを向上させる。
プロジェクトページとコード:https://moment-3d.github.io/
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer [26.375689838055774]
Direct3Dは、Wildの入力画像にスケーラブルなネイティブな3D生成モデルである。
提案手法は, 直接3次元変分オートエンコーダ(D3D-VAE)と直接3次元拡散変換器(D3D-DiT)の2成分からなる。
論文 参考訳(メタデータ) (2024-05-23T17:49:37Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
テキストから3D生成における検索に基づく品質向上のための新しいフレームワークを提案する。
我々はReDreamが幾何整合性を高めて優れた品質を示すことを示すために広範な実験を行った。
論文 参考訳(メタデータ) (2024-02-05T12:50:30Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2次元拡散モデルでは、3次元データなしで優れた一般化と豊富な詳細を実現する蒸留手法が見つかる。
提案するSherpa3Dは,高忠実度,一般化性,幾何整合性を同時に実現する新しいテキスト・ツー・3Dフレームワークである。
論文 参考訳(メタデータ) (2023-12-11T18:59:18Z) - GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and
Consistent 3D Generation [66.46683554587352]
そこで,GeoDreamは,2次元拡散プリエントを持つ明示的な一般化された3Dプリエントを組み込んだ新しい手法である。
具体的には,まず多視点拡散モデルを用いてポーズ画像を生成し,予測画像からコスト容積を構築する。
さらに,3次元の幾何学的先行性を利用して,不整合設計による2次元拡散先行性における3次元認識の大きな可能性を解き放つことを提案する。
論文 参考訳(メタデータ) (2023-11-29T15:48:48Z) - Points-to-3D: Bridging the Gap between Sparse Points and
Shape-Controllable Text-to-3D Generation [16.232803881159022]
本稿では,スパースで自由な3Dポイントとリアルな形状制御可能な3D生成とのギャップを埋めるために,Points-to-3Dのフレキシブルなフレームワークを提案する。
Points-to-3Dの基本的な考え方は、テキストから3D生成を導くために制御可能なスパース3Dポイントを導入することである。
論文 参考訳(メタデータ) (2023-07-26T02:16:55Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。