論文の概要: Generating Feasible and Plausible Counterfactual Explanations for Outcome Prediction of Business Processes
- arxiv url: http://arxiv.org/abs/2403.09232v1
- Date: Thu, 14 Mar 2024 09:56:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:07:03.478904
- Title: Generating Feasible and Plausible Counterfactual Explanations for Outcome Prediction of Business Processes
- Title(参考訳): ビジネスプロセスのアウトカム予測のための実現可能かつ確実な対策説明の作成
- Authors: Alexander Stevens, Chun Ouyang, Johannes De Smedt, Catarina Moreira,
- Abstract要約: データ駆動型アプローチであるREVISEDplusを導入し、妥当な対実的説明を生成する。
まず, プロセスデータの高密度領域内に存在する反ファクトデータを生成するために, 反ファクトアルゴリズムを限定する。
また、プロセスケースにおけるアクティビティ間のシーケンシャルなパターンを学習することで、妥当性を保証します。
- 参考スコア(独自算出の注目度): 45.502284864662585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, various machine and deep learning architectures have been successfully introduced to the field of predictive process analytics. Nevertheless, the inherent opacity of these algorithms poses a significant challenge for human decision-makers, hindering their ability to understand the reasoning behind the predictions. This growing concern has sparked the introduction of counterfactual explanations, designed as human-understandable what if scenarios, to provide clearer insights into the decision-making process behind undesirable predictions. The generation of counterfactual explanations, however, encounters specific challenges when dealing with the sequential nature of the (business) process cases typically used in predictive process analytics. Our paper tackles this challenge by introducing a data-driven approach, REVISEDplus, to generate more feasible and plausible counterfactual explanations. First, we restrict the counterfactual algorithm to generate counterfactuals that lie within a high-density region of the process data, ensuring that the proposed counterfactuals are realistic and feasible within the observed process data distribution. Additionally, we ensure plausibility by learning sequential patterns between the activities in the process cases, utilising Declare language templates. Finally, we evaluate the properties that define the validity of counterfactuals.
- Abstract(参考訳): 近年,予測プロセス分析の分野では,様々な機械学習アーキテクチャやディープラーニングアーキテクチャの導入が成功している。
それでも、これらのアルゴリズムの本質的な不透明さは、人間の意思決定者にとって重大な課題となり、予測の背後にある推論を理解する能力を妨げる。
この懸念の高まりは、シナリオが望ましくない予測の背後にある意思決定プロセスに関するより明確な洞察を提供するために、人間に理解可能なものとして設計された、反事実的説明の導入をきっかけにしている。
しかしながら、カウンターファクトな説明の生成は、予測プロセス分析で一般的に使用される(ビジネス)プロセスケースのシーケンシャルな性質を扱う際に、特定の課題に直面する。
本稿では,データ駆動型アプローチであるREVISEDplusを導入して,より実現可能で実証可能な対実的説明を生成することで,この問題に対処する。
まず, プロセスデータの高密度領域内に存在する反事実を生成するために, 反事実アルゴリズムを制限し, 提案した反事実が観測されたプロセスデータ分布内で現実的かつ実現可能であることを保証する。
さらに、プロセスケースにおけるアクティビティ間の逐次パターンを学習し、Declare言語テンプレートを活用することで、妥当性を保証します。
最後に, カウンターファクトの妥当性を規定する特性について検討する。
関連論文リスト
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Quantifying and Explaining Machine Learning Uncertainty in Predictive
Process Monitoring: An Operations Research Perspective [0.0]
本稿では,情報システムと人工知能を統合した総合的多段階機械学習手法を提案する。
提案したフレームワークは、データ駆動推定の無視など、既存のソリューションの共通的な制限を十分に解決する。
本手法では,Shapley Additive Explanationsの局所的およびグローバル的変異とともに,時間間隔予測を生成するために,Quantile Regression Forestsを用いている。
論文 参考訳(メタデータ) (2023-04-13T11:18:22Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Counterfactual Explanations for Predictive Business Process Monitoring [0.90238471756546]
本稿では,予測プロセス監視のための対実的説明手法であるLORELEYを提案する。
LORELEYは平均忠実度97.69%の予測モデルを近似し、現実的な対実的な説明を生成する。
論文 参考訳(メタデータ) (2022-02-24T11:01:20Z) - Interpreting Process Predictions using a Milestone-Aware Counterfactual
Approach [0.0]
本稿では,予測プロセス分析の文脈において,一般的なモデルに依存しない逆ファクトアルアルゴリズムであるDiCEの利用について検討する。
分析の結果,プロセス予測の導出に際し,アルゴリズムは限定的であることがわかった。
本稿では,足跡の異なる段階における節目対応の反事実の導出を支援する手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T09:14:16Z) - Explainable AI Enabled Inspection of Business Process Prediction Models [2.5229940062544496]
本稿では,モデル説明を用いて,機械学習の予測によって適用された推論を解析する手法を提案する。
本手法の新たな貢献は,解釈可能な機械学習機構によって生成された説明と,過去のプロセス実行を記録するイベントログから抽出された文脈的,あるいはドメイン的知識の両方を活用するモデル検査の提案である。
論文 参考訳(メタデータ) (2021-07-16T06:51:18Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。