論文の概要: Recursive Causal Discovery
- arxiv url: http://arxiv.org/abs/2403.09300v1
- Date: Thu, 14 Mar 2024 11:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:47:15.567219
- Title: Recursive Causal Discovery
- Title(参考訳): 再帰的因果発見
- Authors: Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash,
- Abstract要約: 因果発見は、しばしば因果効果の同定と推定に向けた第一歩である。
この論文は、我々の以前の4つの出版物の上に構築され、拡張されている。
本稿では,提案アルゴリズムの統一的なフレームワークについて述べる。
- 参考スコア(独自算出の注目度): 22.56309301911757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery, i.e., learning the causal graph from data, is often the first step toward the identification and estimation of causal effects, a key requirement in numerous scientific domains. Causal discovery is hampered by two main challenges: limited data results in errors in statistical testing and the computational complexity of the learning task is daunting. This paper builds upon and extends four of our prior publications (Mokhtarian et al., 2021; Akbari et al., 2021; Mokhtarian et al., 2022, 2023a). These works introduced the concept of removable variables, which are the only variables that can be removed recursively for the purpose of causal discovery. Presence and identification of removable variables allow recursive approaches for causal discovery, a promising solution that helps to address the aforementioned challenges by reducing the problem size successively. This reduction not only minimizes conditioning sets in each conditional independence (CI) test, leading to fewer errors but also significantly decreases the number of required CI tests. The worst-case performances of these methods nearly match the lower bound. In this paper, we present a unified framework for the proposed algorithms, refined with additional details and enhancements for a coherent presentation. A comprehensive literature review is also included, comparing the computational complexity of our methods with existing approaches, showcasing their state-of-the-art efficiency. Another contribution of this paper is the release of RCD, a Python package that efficiently implements these algorithms. This package is designed for practitioners and researchers interested in applying these methods in practical scenarios. The package is available at github.com/ban-epfl/rcd, with comprehensive documentation provided at rcdpackage.com.
- Abstract(参考訳): 因果発見、すなわち、データから因果グラフを学習することは、多くの科学領域において重要な要件である因果効果の同定と推定への第一歩であることが多い。
因果発見は2つの大きな課題によって妨げられている: 統計的テストにおけるデータ不足と、学習タスクの計算複雑性は恐ろしいほど複雑である。
この論文は、我々の以前の4つの出版物(Mokhtarian et al , 2021; Akbari et al , 2021; Mokhtarian et al , 2022, 2023a)の上に構築され、拡張されている。
これらの研究は、因果発見のために再帰的に除去できる唯一の変数である可除変数の概念を導入した。
削除可能な変数の存在と識別により、因果発見に対する再帰的なアプローチが可能になる。
この削減は、各条件独立(CI)テストの条件セットを最小限にするだけでなく、必要なCIテストの数を著しく削減する。
これらのメソッドの最悪のパフォーマンスは、下限にほぼ一致する。
本稿では,提案するアルゴリズムの統一的なフレームワークについて述べる。
また,本手法の計算複雑性を既存手法と比較し,その最先端性を示す総合的な文献レビューも含んでいる。
この論文のもう1つの貢献は、これらのアルゴリズムを効率的に実装するPythonパッケージであるRCDのリリースである。
このパッケージは、実践的なシナリオにこれらの手法を適用することに興味のある実践者や研究者のために設計されている。
パッケージはgithub.com/ban-epfl/rcdで入手できる。
関連論文リスト
- Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
既存の因果探索法を効率的に並列化することにより,数千次元まで拡張可能であることを示す。
具体的には、DirectLiNGAMの因果順序付けサブプロデューサに着目し、GPUカーネルを実装して高速化する。
これにより、遺伝子介入による大規模遺伝子発現データに対する因果推論にDirectLiNGAMを適用することで、競争結果が得られる。
論文 参考訳(メタデータ) (2024-03-06T15:06:11Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints [3.2374399328078285]
時系列データから因果学習アルゴリズムによって推定される図形構造は、生成プロセスの因果時間スケールがデータの測定時間スケールと一致しない場合、誤解を招く因果情報を提供することができる。
既存のアルゴリズムは、この課題に対応するための限られたリソースを提供するため、研究者は彼らが知っているモデルを使うか、あるいは完全に因果学習を行う必要がある。
既存の方法は、(1)因果差と測定値の違いが知られていること、(2)時間スケールの違いが不明な場合にのみ非常に少数のランダム変数を扱うこと、(3)変数のペアにのみ適用されること、4)変数のペアにしか適用できないこと、など、四つの異なる欠点に直面している。
論文 参考訳(メタデータ) (2022-05-18T22:38:57Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
癌に対する化学療法治療は、多数の相互作用する変数と制約を持つ複雑な最適化問題である。
より洗練されたアルゴリズムは、このような複雑な問題に対してより良いパフォーマンスをもたらすことが示される。
我々は、この問題における多数の相互作用によって、より洗練されたアルゴリズムが妨げられていることが原因であると仮定する。
論文 参考訳(メタデータ) (2022-05-17T15:28:46Z) - Recursive Causal Structure Learning in the Presence of Latent Variables
and Selection Bias [27.06618125828978]
本稿では,潜伏変数と選択バイアスの存在下での観測データからシステムの因果MAGを学習する問題を考察する。
本稿では,音と完全性を備えた計算効率のよい制約ベースの新しい手法を提案する。
提案手法と人工と実世界の両方の構造に関する技術の現状を比較した実験結果を提供する。
論文 参考訳(メタデータ) (2021-10-22T19:49:59Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - DPER: Efficient Parameter Estimation for Randomly Missing Data [0.24466725954625884]
本稿では,1クラス・複数クラスのランダムに欠落したデータセットに対して,最大推定値(MLE)を求めるアルゴリズムを提案する。
我々のアルゴリズムは、データを通して複数のイテレーションを必要としないので、他の方法よりも時間のかかることを約束します。
論文 参考訳(メタデータ) (2021-06-06T16:37:48Z) - A Recursive Markov Boundary-Based Approach to Causal Structure Learning [22.38302412440357]
因果構造学習のための新しい再帰型手法を提案する。
条件付き独立テストの必要回数を大幅に削減する。
実験の結果,提案アルゴリズムは,合成構造と実世界構造の両方において,最先端のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-10-10T13:26:22Z) - Boosting Data Reduction for the Maximum Weight Independent Set Problem
Using Increasing Transformations [59.84561168501493]
最大重み独立集合問題に対する新しい一般化データ削減および変換規則を導入する。
驚くべきことに、これらのいわゆる増進変換は問題を単純化し、還元空間を開き、アルゴリズムの後にさらに小さな既約グラフが得られる。
提案アルゴリズムは, 1つのインスタンスを除くすべての既約グラフを計算し, 従来よりも多くのインスタンスを最適に解き, 最高の最先端解法よりも最大2桁高速に解き, 解法DynWVCやHILSよりも高品質な解を求める。
論文 参考訳(メタデータ) (2020-08-12T08:52:50Z) - Computational Barriers to Estimation from Low-Degree Polynomials [81.67886161671379]
本研究では,隠れ構造物の存在を検知する作業において,低次構造物のパワーについて検討する。
大規模な「信号+雑音」問題に対して、任意の程度に達成可能な最良の平均二乗誤差に対して、ユーザフレンドリな下界を与える。
応用として,植込みサブマトリクスに対する低次平均2乗誤差の厳密な評価と高密度サブグラフ問題について述べる。
論文 参考訳(メタデータ) (2020-08-05T17:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。