Annotation Free Semantic Segmentation with Vision Foundation Models
- URL: http://arxiv.org/abs/2403.09307v3
- Date: Fri, 13 Sep 2024 08:34:48 GMT
- Title: Annotation Free Semantic Segmentation with Vision Foundation Models
- Authors: Soroush Seifi, Daniel Olmeda Reino, Fabien Despinoy, Rahaf Aljundi,
- Abstract summary: We generate free annotations for any semantic segmentation dataset using existing foundation models.
We use CLIP to detect objects and SAM to generate high quality object masks.
Our approach can bring language-based semantics to any pretrained vision encoder with minimal training.
- Score: 11.026377387506216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Segmentation is one of the most challenging vision tasks, usually requiring large amounts of training data with expensive pixel level annotations. With the success of foundation models and especially vision-language models, recent works attempt to achieve zeroshot semantic segmentation while requiring either large-scale training or additional image/pixel level annotations. In this work, we generate free annotations for any semantic segmentation dataset using existing foundation models. We use CLIP to detect objects and SAM to generate high quality object masks. Next, we build a lightweight module on top of a self-supervised vision encoder, DinoV2, to align the patch features with a pretrained text encoder for zeroshot semantic segmentation. Our approach can bring language-based semantics to any pretrained vision encoder with minimal training, uses foundation models as the sole source of supervision and generalizes from little training data with no annotation.
Related papers
- A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-11-30T15:33:42Z) - Labeling Indoor Scenes with Fusion of Out-of-the-Box Perception Models [4.157013247909771]
We propose to leverage the recent advancements in state-of-the-art models for bottom-up segmentation (SAM), object detection (Detic), and semantic segmentation (MaskFormer)
We aim to develop a cost-effective labeling approach to obtain pseudo-labels for semantic segmentation and object instance detection in indoor environments.
We demonstrate the effectiveness of the proposed approach on the Active Vision dataset and the ADE20K dataset.
arXiv Detail & Related papers (2023-11-17T21:58:26Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
We present ZeroSeg, a novel method that leverages the existing pretrained vision-language model (VL) to train semantic segmentation models.
ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image.
Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data.
arXiv Detail & Related papers (2023-06-01T08:47:06Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic
Segmentation [40.27705176115985]
Few-shot semantic segmentation addresses the learning task in which only few images with ground truth pixel-level labels are available for the novel classes of interest.
We propose a novel meta-learning framework, which predicts pseudo pixel-level segmentation masks from a limited amount of data and their semantic labels.
Our proposed learning model can be viewed as a pixel-level meta-learner.
arXiv Detail & Related papers (2021-11-02T08:28:11Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Unsupervised Vision-and-Language Pre-training Without Parallel Images
and Captions [92.47566804182338]
We investigate if a strong V&L representation model can be learned through unsupervised pre-training without image-caption corpora.
In particular, we propose to conduct mask-and-predict'' pre-training on text-only and image-only corpora.
We find that such a simple approach performance close to a model pre-trained with aligned data, on four English V&L benchmarks.
arXiv Detail & Related papers (2020-10-24T08:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.