Exposure Completing for Temporally Consistent Neural High Dynamic Range Video Rendering
- URL: http://arxiv.org/abs/2407.13309v2
- Date: Sun, 4 Aug 2024 08:40:36 GMT
- Title: Exposure Completing for Temporally Consistent Neural High Dynamic Range Video Rendering
- Authors: Jiahao Cui, Wei Jiang, Zhan Peng, Zhiyu Pan, Zhiguo Cao,
- Abstract summary: We propose a novel paradigm to render HDR frames via completing the absent exposure information.
Our approach involves interpolating neighbor LDR frames in the time dimension to reconstruct LDR frames for the absent exposures.
This benefits the fusing process for HDR results, reducing noise and ghosting artifacts therefore improving temporal consistency.
- Score: 17.430726543786943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High dynamic range (HDR) video rendering from low dynamic range (LDR) videos where frames are of alternate exposure encounters significant challenges, due to the exposure change and absence at each time stamp. The exposure change and absence make existing methods generate flickering HDR results. In this paper, we propose a novel paradigm to render HDR frames via completing the absent exposure information, hence the exposure information is complete and consistent. Our approach involves interpolating neighbor LDR frames in the time dimension to reconstruct LDR frames for the absent exposures. Combining the interpolated and given LDR frames, the complete set of exposure information is available at each time stamp. This benefits the fusing process for HDR results, reducing noise and ghosting artifacts therefore improving temporal consistency. Extensive experimental evaluations on standard benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting the importance of absent exposure completing in HDR video rendering. The code is available at https://github.com/cuijiahao666/NECHDR.
Related papers
- Diffusion-Promoted HDR Video Reconstruction [45.73396977607666]
High dynamic range (LDR) video reconstruction aims to generate HDR videos from low dynamic range (LDR) frames captured with alternating exposures.
Most existing works solely rely on the regression-based paradigm, leading to adverse effects such as ghosting artifacts and missing details in saturated regions.
We propose a diffusion-promoted method for HDR video reconstruction, termed HDR-V-Diff, which incorporates a diffusion model to capture the HDR distribution.
arXiv Detail & Related papers (2024-06-12T13:38:10Z) - Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field [23.92087253022495]
Radiance field methods represent the state of the art in reconstructing complex scenes from multi-view photos.
Their reliance on a pinhole camera model, assuming all scene elements are in focus in the input images, presents practical challenges and complicates refocusing during novel-view synthesis.
We present a lightweight analytical based on 3D Gaussian Splatting that utilizes multi-view LDR images on varying exposure times, radiance of apertures, and focus distances as input to reconstruct a high-dynamic-range scene.
arXiv Detail & Related papers (2024-06-11T15:00:24Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
We propose the irradiance fields from sparse LDR panoramic images to increase the observation counts for faithful geometry recovery.
Experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction.
arXiv Detail & Related papers (2023-12-26T08:10:22Z) - Online Overexposed Pixels Hallucination in Videos with Adaptive
Reference Frame Selection [90.35085487641773]
Low dynamic range (LDR) cameras cannot deal with wide dynamic range inputs, frequently leading to local overexposure issues.
We present a learning-based system to reduce these artifacts without resorting to complex processing mechanisms.
arXiv Detail & Related papers (2023-08-29T17:40:57Z) - LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video
Reconstruction [20.911738532410766]
We propose an end-to-end HDR video composition framework, which aligns LDR frames in feature space and then merges aligned features into an HDR frame.
In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering.
arXiv Detail & Related papers (2023-08-22T01:43:00Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
In this work, we aim ambitiously for a more realistic and challenging task - joint video multi-frame and deblurring under unknown exposure time.
We first adopt a variant of supervised contrastive learning to construct an exposure-aware representation from input blurred frames.
We then build our video reconstruction network upon the exposure and motion representation by progressive exposure-adaptive convolution and motion refinement.
arXiv Detail & Related papers (2023-03-27T09:43:42Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z) - HDRVideo-GAN: Deep Generative HDR Video Reconstruction [19.837271879354184]
We propose an end-to-end GAN-based framework for HDR video reconstruction from LDR sequences with alternating exposures.
We first extract clean LDR frames from noisy LDR video with alternating exposures with a denoising network trained in a self-supervised setting.
We then align the neighboring alternating-exposure frames to a reference frame and then reconstruct high-quality HDR frames in a complete adversarial setting.
arXiv Detail & Related papers (2021-10-22T14:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.