論文の概要: An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security
- arxiv url: http://arxiv.org/abs/2403.09402v1
- Date: Thu, 14 Mar 2024 13:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:27:28.811308
- Title: An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security
- Title(参考訳): 情報セキュリティのためのアーキテクチャに基づくデータフロー分析のための拡張可能なフレームワーク
- Authors: Nicolas Boltz, Sebastian Hahner, Christopher Gerking, Robert Heinrich,
- Abstract要約: セキュリティ関連プロパティは、しばしばデータフロー図(DFD)に基づいて分析される
データフロー解析のためのオープンかつフレームワークを提案する。
このフレームワークはDFDと互換性があり、Palladioアーキテクチャ記述言語からデータフローを抽出することもできる。
- 参考スコア(独自算出の注目度): 1.7749883815108154
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The growing interconnection between software systems increases the need for security already at design time. Security-related properties like confidentiality are often analyzed based on data flow diagrams (DFDs). However, manually analyzing DFDs of large software systems is bothersome and error-prone, and adjusting an already deployed software is costly. Additionally, closed analysis ecosystems limit the reuse of modeled information and impede comprehensive statements about a system's security. In this paper, we present an open and extensible framework for data flow analysis. The central element of our framework is our new implementation of a well-validated data-flow-based analysis approach. The framework is compatible with DFDs and can also extract data flows from the Palladio architectural description language. We showcase the extensibility with multiple model and analysis extensions. Our evaluation indicates that we can analyze similar scenarios while achieving higher scalability compared to previous implementations.
- Abstract(参考訳): ソフトウェアシステム間の相互接続の増大は、すでに設計時にセキュリティの必要性を高める。
機密性のようなセキュリティ関連のプロパティは、しばしばデータフロー図(DFD)に基づいて分析される。
しかし、大規模ソフトウェアシステムのDFDを手動で解析することは厄介であり、既にデプロイされているソフトウェアを調整するのにコストがかかる。
さらに、クローズドな分析エコシステムは、モデル化された情報の再利用を制限し、システムのセキュリティに関する包括的なステートメントを妨げる。
本稿では,データフロー解析のためのオープンで拡張可能なフレームワークを提案する。
私たちのフレームワークの中心的な要素は、よく検証されたデータフローベースの分析アプローチの実装です。
このフレームワークはDFDと互換性があり、Palladioアーキテクチャ記述言語からデータフローを抽出することもできる。
複数のモデルおよび分析拡張で拡張性を示す。
評価の結果,従来の実装よりも高いスケーラビリティを実現しつつ,同様のシナリオを解析できることが示唆された。
関連論文リスト
- Robust Incremental Structure-from-Motion with Hybrid Features [73.55745864762703]
本稿では,線とその構造的幾何学的関係を利用した漸進的構造移動システム(SfM)を提案する。
我々のシステムは、SfMの広く使われている点ベースの技術と比較すると、一貫して堅牢で正確である。
論文 参考訳(メタデータ) (2024-09-29T22:20:32Z) - Technical Upgrades to and Enhancements of a System Vulnerability Analysis Tool Based on the Blackboard Architecture [0.0]
このシステムでは、ブラックボードアーキテクチャのルールファクトパラダイムに基づく一般化ロジックが実装された。
本稿は,マルチスレッディングの実装を含む今後の研究の道筋について論じる。
論文 参考訳(メタデータ) (2024-09-17T05:06:42Z) - When Dataflow Analysis Meets Large Language Models [9.458251511218817]
本稿では,LLMDFAについて述べる。LLMDFAはLLLMを利用したデータフロー解析フレームワークで,コンパイルインフラを必要とせずに任意のコードスニペットを解析する。
LLMDFAは、要約に基づくデータフロー分析にヒントを得て、問題を3つのサブプロブレムに分解し、いくつかの重要な戦略によって効果的に解決する。
評価の結果,本設計は幻覚を緩和し,推論能力を向上し,データフロー関連バグの検出において高い精度とリコールが得られることがわかった。
論文 参考訳(メタデータ) (2024-02-16T15:21:35Z) - How Dataflow Diagrams Impact Software Security Analysis: an Empirical
Experiment [5.6169596483204085]
本研究では,DFDがセキュリティ分析環境におけるアナリストのパフォーマンスに与える影響を調査するための実証実験を行った結果について述べる。
その結果, モデル支援条件下では, 分析課題の正解率は有意に向上した。
実験で得られた知見に基づいて,DFDをセキュリティ分析に使用する上でのオープンな3つの課題を特定した。
論文 参考訳(メタデータ) (2024-01-09T09:22:35Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V [0.0]
不正アクセス、障害注入、およびプライバシー侵害は、信頼できないアクターによる潜在的な脅威である。
本稿では,実行時セキュリティがシステム完全性を保護するために,IFT(Information Flow Tracking)技術を提案する。
本研究では,ハードウェアベース IFT 技術とゲートレベル IFT (GLIFT) 技術を統合したマルチレベル IFT モデルを提案する。
論文 参考訳(メタデータ) (2023-11-17T02:04:07Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Tool-Supported Architecture-Based Data Flow Analysis for Confidentiality [1.6544671438664054]
我々はデータフロー分析をJavaベースのツールとして再実装し、データフローに基づいてアクセス違反を特定する。
ツールの評価は,類似したシナリオを解析し,既存の分析よりも拡張性が高いことを示す。
論文 参考訳(メタデータ) (2023-08-03T09:21:20Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。