論文の概要: Robust Incremental Structure-from-Motion with Hybrid Features
- arxiv url: http://arxiv.org/abs/2409.19811v1
- Date: Sun, 29 Sep 2024 22:20:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:04:04.798666
- Title: Robust Incremental Structure-from-Motion with Hybrid Features
- Title(参考訳): ハイブリッド特徴をもつロバストインクリメンタル構造
- Authors: Shaohui Liu, Yidan Gao, Tianyi Zhang, Rémi Pautrat, Johannes L. Schönberger, Viktor Larsson, Marc Pollefeys,
- Abstract要約: 本稿では,線とその構造的幾何学的関係を利用した漸進的構造移動システム(SfM)を提案する。
我々のシステムは、SfMの広く使われている点ベースの技術と比較すると、一貫して堅牢で正確である。
- 参考スコア(独自算出の注目度): 73.55745864762703
- License:
- Abstract: Structure-from-Motion (SfM) has become a ubiquitous tool for camera calibration and scene reconstruction with many downstream applications in computer vision and beyond. While the state-of-the-art SfM pipelines have reached a high level of maturity in well-textured and well-configured scenes over the last decades, they still fall short of robustly solving the SfM problem in challenging scenarios. In particular, weakly textured scenes and poorly constrained configurations oftentimes cause catastrophic failures or large errors for the primarily keypoint-based pipelines. In these scenarios, line segments are often abundant and can offer complementary geometric constraints. Their large spatial extent and typically structured configurations lead to stronger geometric constraints as compared to traditional keypoint-based methods. In this work, we introduce an incremental SfM system that, in addition to points, leverages lines and their structured geometric relations. Our technical contributions span the entire pipeline (mapping, triangulation, registration) and we integrate these into a comprehensive end-to-end SfM system that we share as an open-source software with the community. We also present the first analytical method to propagate uncertainties for 3D optimized lines via sensitivity analysis. Experiments show that our system is consistently more robust and accurate compared to the widely used point-based state of the art in SfM -- achieving richer maps and more precise camera registrations, especially under challenging conditions. In addition, our uncertainty-aware localization module alone is able to consistently improve over the state of the art under both point-alone and hybrid setups.
- Abstract(参考訳): Structure-from-Motion (SfM) は、カメラキャリブレーションとシーン再構築のためのユビキタスツールとなり、コンピュータビジョンなど多くのダウンストリームアプリケーションで使われている。
最先端のSfMパイプラインは、何十年もの間、よくコンテクストされた、よく構成されたシーンで高い成熟度に達してきたが、それでも、挑戦的なシナリオでSfMの問題を堅牢に解決するには至っていない。
特に、弱いテクスチャ化されたシーンと制約の弱い構成は、しばしば破滅的な失敗や、主にキーポイントベースのパイプラインの大きなエラーを引き起こす。
これらのシナリオでは、線分はしばしば豊富であり、相補的な幾何学的制約を与えることができる。
それらの大きな空間範囲と典型的に構造化された構成は、伝統的なキーポイントベースの手法と比較して、より強い幾何学的制約をもたらす。
本研究では、点に加えて、線とその構造的幾何関係を利用する漸進的なSfMシステムを導入する。
技術的なコントリビューションはパイプライン全体(マッピング、三角測量、登録)に及び、これらを総合的なエンドツーエンドのSfMシステムに統合し、コミュニティとオープンソースソフトウェアとして共有しています。
また, 感度解析による3次元最適化線の不確かさを伝搬する最初の解析手法を提案する。
実験により、我々のシステムは、SfMの広く使われているポイントベースの最先端技術と比較して、一貫して堅牢で正確であることが示され、よりリッチなマップとより正確なカメラ登録を実現している。
さらに、我々の不確実性を考慮したローカライゼーションモジュールだけでは、ポイントアローンとハイブリッドの両方のセットアップの下で、最先端よりも一貫して改善できる。
関連論文リスト
- Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
カメラによるセマンティックシーンの補完を改善するための,新たな時間的文脈学習パラダイムであるHTCLを提案する。
提案手法は,Semantic KITTIベンチマークで1st$をランク付けし,mIoUの点でLiDARベースの手法を超えている。
論文 参考訳(メタデータ) (2024-07-02T09:11:17Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
本研究では,FAM(Flatten Anything Model)を導入し,グローバルな自由境界面パラメータ化を実現する。
従来の手法と比較して,FAMは接続情報を活用することなく,個別の面上で直接動作する。
当社のFAMは前処理を必要とせずに完全に自動化されており,高度に複雑なトポロジを扱うことができる。
論文 参考訳(メタデータ) (2024-05-23T14:39:52Z) - Distributed Global Structure-from-Motion with a Deep Front-End [11.2064188838227]
我々は,グローバルSfMがSOTAインクリメンタルSfMアプローチ(COLMAP)と同等に機能するかどうかを検討する。
我々のSfMシステムは、分散計算を活用するためにゼロから設計されており、複数のマシン上で計算を並列化し、大規模なシーンにスケールすることができる。
論文 参考訳(メタデータ) (2023-11-30T18:47:18Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - AdaSfM: From Coarse Global to Fine Incremental Adaptive Structure from
Motion [48.835456049755166]
AdaSfMは粗粒度適応型SfMアプローチであり、大規模かつ挑戦的なデータセットにスケーラブルである。
当社のアプローチはまず,低コストセンサによる計測を利用して,ビューグラフの信頼性を向上させる,粗大なグローバルSfMを実現する。
本手法では,全局所再構成をグローバルSfMの座標フレームに整合させるため,しきい値適応戦略を用いる。
論文 参考訳(メタデータ) (2023-01-28T09:06:50Z) - Structure PLP-SLAM: Efficient Sparse Mapping and Localization using
Point, Line and Plane for Monocular, RGB-D and Stereo Cameras [13.693353009049773]
本稿では,PPRモジュールを組み込んだ高機能カメラローカライゼーションを実現するために,ポイント・ライン・クラウドを用いた視界SLAMシステムを提案する。
再構成された線や平面上での複数の実行時最適化を提案することにより,幾何的プリミティブをスケールのあいまいさで再構築するという課題に対処する。
その結果,提案したSLAMはセマンティック機能をしっかりと組み込んで,トラッキングとバックエンドの最適化を強化していることがわかった。
論文 参考訳(メタデータ) (2022-07-13T09:05:35Z) - Residual Multiplicative Filter Networks for Multiscale Reconstruction [24.962697695403037]
我々は,学習した再構成の周波数サポートをきめ細かな制御で粗大な最適化を可能にする,新しい座標ネットワークアーキテクチャとトレーニング手法を提案する。
これらの修正によって、自然画像への粗大なフィッティングのマルチスケール最適化が実現されることを示す。
次に, 単粒子Creo-EM再構成問題に対する合成データセットのモデル評価を行った。
論文 参考訳(メタデータ) (2022-06-01T20:16:28Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。