論文の概要: Mitigating attribute amplification in counterfactual image generation
- arxiv url: http://arxiv.org/abs/2403.09422v1
- Date: Thu, 14 Mar 2024 14:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:17:36.885081
- Title: Mitigating attribute amplification in counterfactual image generation
- Title(参考訳): 反ファクト画像生成における属性増幅の緩和
- Authors: Tian Xia, Mélanie Roschewitz, Fabio De Sousa Ribeiro, Charles Jones, Ben Glocker,
- Abstract要約: 因果生成モデリングは医療画像への関心が高まっている。
ほとんどの研究は、見栄えのよい偽物画像を作ることに重点を置いている。
属性増幅は,反実的トレーニングプロセスにおけるハードラベルの使用によって引き起こされることを示す。
- 参考スコア(独自算出の注目度): 18.032123360046644
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal generative modelling is gaining interest in medical imaging due to its ability to answer interventional and counterfactual queries. Most work focuses on generating counterfactual images that look plausible, using auxiliary classifiers to enforce effectiveness of simulated interventions. We investigate pitfalls in this approach, discovering the issue of attribute amplification, where unrelated attributes are spuriously affected during interventions, leading to biases across protected characteristics and disease status. We show that attribute amplification is caused by the use of hard labels in the counterfactual training process and propose soft counterfactual fine-tuning to mitigate this issue. Our method substantially reduces the amplification effect while maintaining effectiveness of generated images, demonstrated on a large chest X-ray dataset. Our work makes an important advancement towards more faithful and unbiased causal modelling in medical imaging.
- Abstract(参考訳): 因果生成モデル(Causal Generative Modelling)は、介入的および反事実的クエリに答える能力によって、医療画像への関心が高まっている。
ほとんどの研究は、シミュレーションされた介入の有効性を強制するために補助的な分類器を使用して、妥当に見える反ファクト画像を生成することに重点を置いている。
提案手法の落とし穴について検討し,無関係な属性が介入中に急激な影響を受け,保護された特徴と疾患状態に偏りが生じる属性増幅の問題を明らかにする。
属性増幅は, 対実的トレーニングプロセスにおけるハードラベルの使用によって引き起こされるものであり, この問題を軽減するためにソフトな対実的微調整を提案する。
胸部X線データセットで得られた画像の有効性を維持しながら増幅効果を大幅に低減する。
我々の研究は、医療画像におけるより忠実で偏見のない因果モデリングに向けて重要な進歩を遂げている。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method [4.303291247305105]
モデルロバスト性を高めるために、画像レベルラベルとドメイン固有の拡張の両方を活用することで教師付きコントラスト学習法を改善する。
乳癌の病理組織像から得られたBreakHisデータセットについて検討した。
この改良は93.63%の絶対精度に対応し、データの特性を利用してより適切な表現空間を学習するアプローチの有効性を強調した。
論文 参考訳(メタデータ) (2024-05-06T17:06:11Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
医用画像が公開されていないため、現代のアルゴリズムは、大量の自然画像に基づいて事前訓練されたモデルに依存するようになった。
自然画像と医療画像の間に重要なエムドメインの相違があり、AIモデルは敵の攻撃に対するエムの脆弱性を高める。
本稿では,テクスチャと色適応を伝達学習に導入する Em ドメイン同化手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T06:39:15Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Boosting Dermatoscopic Lesion Segmentation via Diffusion Models with
Visual and Textual Prompts [27.222844687360823]
我々は、病変特異的な視覚的およびテキスト的プロンプトを用いた制御フローを追加して、生成モデルの最新の進歩に適応する。
SSIM画像の品質測定では9%以上,Dice係数は5%以上向上する。
論文 参考訳(メタデータ) (2023-10-04T15:43:26Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
生成拡散モデルにおける従来の計測値とモデル解釈可能性による画像の忠実度との間に連続的なトレードオフが生じる。
我々は、真に解釈可能な生成モデルを開発するための設計原則のセットを提示する。
論文 参考訳(メタデータ) (2023-03-31T09:11:26Z) - Raising the Cost of Malicious AI-Powered Image Editing [82.71990330465115]
本研究では,大規模な拡散モデルによる悪意ある画像編集のリスクを軽減するためのアプローチを提案する。
鍵となるアイデアは、イメージを免疫して、これらのモデルによる操作に抵抗するようにすることだ。
論文 参考訳(メタデータ) (2023-02-13T18:38:42Z) - Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems [7.909848251752742]
胸部X線写真における生体認証は、研究目的のためにそのようなデータの公開を妨げている。
この研究は、高品質なクラス条件画像の匿名胸部X線データセットを合成するために潜時拡散モデルを用いている。
論文 参考訳(メタデータ) (2022-11-02T17:43:02Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。