論文の概要: LLM-based agents for automating the enhancement of user story quality: An early report
- arxiv url: http://arxiv.org/abs/2403.09442v1
- Date: Thu, 14 Mar 2024 14:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:07:47.000265
- Title: LLM-based agents for automating the enhancement of user story quality: An early report
- Title(参考訳): ユーザストーリー品質向上のためのLCMエージェントの初期報告
- Authors: Zheying Zhang, Maruf Rayhan, Tomas Herda, Manuel Goisauf, Pekka Abrahamsson,
- Abstract要約: 本研究では,オーストリアのポストグループITアジャイルチームにおけるユーザストーリの品質向上を目的とした,大規模な言語モデルの利用について検討する。
我々は,自律型LLMエージェントシステムの参照モデルを開発し,企業で実装した。
調査におけるユーザストーリの品質と,これらのエージェントによるユーザストーリの品質改善の有効性は,6つのアジャイルチームの11人の参加者によって評価された。
- 参考スコア(独自算出の注目度): 2.856781525749652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In agile software development, maintaining high-quality user stories is crucial, but also challenging. This study explores the use of large language models to automatically improve the user story quality in Austrian Post Group IT agile teams. We developed a reference model for an Autonomous LLM-based Agent System and implemented it at the company. The quality of user stories in the study and the effectiveness of these agents for user story quality improvement was assessed by 11 participants across six agile teams. Our findings demonstrate the potential of LLMs in improving user story quality, contributing to the research on AI role in agile development, and providing a practical example of the transformative impact of AI in an industry setting.
- Abstract(参考訳): アジャイルソフトウェア開発では、高品質なユーザストーリの維持は重要ですが、課題もあります。
本研究では,オーストリアのポストグループITアジャイルチームにおいて,ユーザストーリの品質を自動改善するための大規模言語モデルの利用について検討する。
我々は,自律型LLMエージェントシステムの参照モデルを開発し,企業で実装した。
調査におけるユーザストーリの品質と,これらのエージェントによるユーザストーリの品質改善の有効性は,6つのアジャイルチームの11人の参加者によって評価された。
我々の研究は、LLMがユーザストーリーの品質を向上させる可能性を示し、アジャイル開発におけるAIの役割の研究に貢献し、産業環境におけるAIの変革的影響の実践的な例を提供する。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Assessing the Performance of Human-Capable LLMs -- Are LLMs Coming for Your Job? [0.0]
SelfScoreは、ヘルプデスクとプロのコンサルティングタスクにおけるLLM(Large Language Model)の自動エージェントのパフォーマンスを評価するために設計されたベンチマークである。
このベンチマークは、問題の複雑さと応答の助け、スコアリングシステムにおける透明性と単純さの確保に関するエージェントを評価する。
この研究は、特にAI技術が優れている地域では、労働者の移動の可能性への懸念を提起している。
論文 参考訳(メタデータ) (2024-10-05T14:37:35Z) - AI based Multiagent Approach for Requirements Elicitation and Analysis [3.9422957660677476]
本研究では,大規模言語モデル(LLM)を用いた要求分析タスクの自動化の有効性を実証的に検討する。
我々は,GPT-3.5,GPT-4 Omni,LLaMA3-70,Mixtral-8Bの4つのモデルをデプロイし,実世界の4つのプロジェクトにおける要件を分析する実験を行った。
予備的な結果は,各モデルにおけるタスク完了の顕著な変化を示している。
論文 参考訳(メタデータ) (2024-08-18T07:23:12Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models [8.123272461141815]
厳密にキュレートされた高品質データセットに基づいてトレーニングされたTinyAgentモデルを紹介する。
また,言語エージェントの能力向上を目的とした革新的システムであるCMAT(Collaborative Multi-Agent Tuning)フレームワークを提案する。
本研究では,マルチエージェントシステムと環境フィードバック機構を統合した新しいコミュニケーションエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-02T06:07:35Z) - Characteristic AI Agents via Large Language Models [40.10858767752735]
本研究は,特有なAIエージェント構築における大規模言語モデルの性能調査に焦点をあてる。
character100''と呼ばれるデータセットがこのベンチマークのために構築されており、ウィキペディアの言語モデルでロールプレイを行う最も訪問者の多い人々で構成されている。
実験結果から,LLMの能力向上に向けた潜在的な方向性が明らかにされた。
論文 参考訳(メタデータ) (2024-03-19T02:25:29Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - The Next Chapter: A Study of Large Language Models in Storytelling [51.338324023617034]
大規模言語モデル(LLM)を用いたプロンプトベース学習の適用は,自然言語処理(NLP)タスクにおいて顕著な性能を示した。
本稿では,LLMのストーリー生成能力と最近のモデルを比較するために,自動評価と人的評価の両方を利用した総合的な調査を行う。
その結果、LLMは他のストーリー生成モデルと比較して、非常に高い品質のストーリーを生成することがわかった。
論文 参考訳(メタデータ) (2023-01-24T02:44:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。