論文の概要: Agent-Driven Automatic Software Improvement
- arxiv url: http://arxiv.org/abs/2406.16739v1
- Date: Mon, 24 Jun 2024 15:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:15:21.799159
- Title: Agent-Driven Automatic Software Improvement
- Title(参考訳): エージェント駆動自動ソフトウェアの改善
- Authors: Fernando Vallecillos Ruiz,
- Abstract要約: 本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With software maintenance accounting for 50% of the cost of developing software, enhancing code quality and reliability has become more critical than ever. In response to this challenge, this doctoral research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs) to perform software maintenance tasks. The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation. One distinct challenge is the last-mile problems, errors at the final stage of producing functionally and contextually relevant code. Furthermore, this project aims to surpass the inherent limitations of current LLMs in source code through a collaborative framework where agents can correct and learn from each other's errors. We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement. Our main goal is to achieve a leap forward in the field of automatic software improvement by developing new tools and frameworks that can enhance the efficiency and reliability of software development.
- Abstract(参考訳): ソフトウェアメンテナンスがソフトウェア開発コストの50%を占めるようになると、コード品質と信頼性の向上がこれまで以上に重要になっています。
この課題に対応するために、この博士研究提案は、ソフトウェアメンテナンスタスクを実行するために、LLM(Large Language Models)を利用したエージェントの配置に焦点を当て、革新的なソリューションを探求することを目的としている。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
ひとつ大きな課題は、機能的およびコンテキスト的に関連付けられたコードを生成する最終段階でのエラーである。
さらに、このプロジェクトは、エージェントが互いのエラーを訂正し、学習できる協調フレームワークを通じて、ソースコードにおける現在のLLMの固有の制限を克服することを目的としている。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの裏にあるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
私たちの主な目標は、ソフトウェア開発の効率性と信頼性を高める新しいツールとフレームワークを開発することで、自動ソフトウェア改善の分野における飛躍的な進歩を達成することです。
関連論文リスト
- Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
Agentless - ソフトウェア開発の問題を自動解決するためのエージェントレスアプローチです。
エージェントベースのアプローチの冗長で複雑な設定と比較すると、エージェントレスは局所化の単純化された2段階のプロセスを採用し、修理を行う。
人気の高いSWE-bench Liteベンチマークの結果、驚くほど単純なAgentlessは、既存のすべてのオープンソースソフトウェアエージェントと比較して、最高のパフォーマンス(27.33%)と最低コスト(0.34ドル)を達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:24:45Z) - Automatic Programming: Large Language Models and Beyond [48.34544922560503]
我々は,プログラマの責任に関するコード品質,セキュリティ,関連する問題について検討する。
ソフトウェア工学の進歩が自動プログラミングを実現する方法について論じる。
我々は、近い将来のプログラミング環境に焦点をあてて、先見的な視点で締めくくります。
論文 参考訳(メタデータ) (2024-05-03T16:19:24Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
プログラムの改善を自律的に達成するために、GitHubの問題を解決する自動化アプローチを提案する。
AutoCodeRoverと呼ばれるアプローチでは、LLMは洗練されたコード検索機能と組み合わせられ、最終的にプログラムの変更やパッチにつながります。
SWE-bench-lite(300の現実のGitHubイシュー)の実験では、GitHubの問題を解決する効果が向上している(SWE-bench-liteでは19%)。
論文 参考訳(メタデータ) (2024-04-08T11:55:09Z) - Enhanced Automated Code Vulnerability Repair using Large Language Models [0.0]
この研究は、コードの脆弱性を自動修復する複雑な課題に対処する。
LLM(Advanced Large Language Models)を使用して、コード修正を表現する新しいフォーマットを導入する。
Cコードの脆弱性を特徴とするデータセットを微調整したLLMは、自動コード修復技術の正確性と適応性を大幅に向上した。
論文 参考訳(メタデータ) (2024-01-08T09:01:29Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - Towards Trustworthy AI Software Development Assistance [0.599251270168187]
現在のソフトウェア開発アシスタントは信頼できない傾向があり、しばしば誤った、安全でない、あるいは品質の低いコードを生成する。
我々は、信頼できるAIソフトウェア開発アシスタントの構築、トレーニング、使用のための全体的アーキテクチャを導入することで、これらの問題を解決することを目指している。
論文 参考訳(メタデータ) (2023-12-14T16:59:49Z) - Static Code Analysis in the AI Era: An In-depth Exploration of the
Concept, Function, and Potential of Intelligent Code Analysis Agents [2.8686437689115363]
我々は、AIモデル、エンジニアリングプロセス設計、従来の非AIコンポーネントを組み合わせた新しい概念である、Intelligent Code Analysis Agent (ICAA)を紹介する。
我々は、バグ検出精度を大幅に改善し、偽陽性率は基準値の85%から66%まで減少し、60.8%の有望なリコール率を得た。
この課題にもかかわらず、ICAAはソフトウェアの品質保証に革命をもたらす可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-13T03:16:58Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。