EditScout: Locating Forged Regions from Diffusion-based Edited Images with Multimodal LLM
- URL: http://arxiv.org/abs/2412.03809v1
- Date: Thu, 05 Dec 2024 02:05:33 GMT
- Title: EditScout: Locating Forged Regions from Diffusion-based Edited Images with Multimodal LLM
- Authors: Quang Nguyen, Truong Vu, Trong-Tung Nguyen, Yuxin Wen, Preston K Robinette, Taylor T Johnson, Tom Goldstein, Anh Tran, Khoi Nguyen,
- Abstract summary: We present a novel framework that integrates a multimodal Large Language Model for enhanced reasoning capabilities.
Our framework achieves promising results on MagicBrush, AutoSplice, and PerfBrush datasets.
Notably, our method excels on the PerfBrush dataset, a self-constructed test set featuring previously unseen types of edits.
- Score: 50.054404519821745
- License:
- Abstract: Image editing technologies are tools used to transform, adjust, remove, or otherwise alter images. Recent research has significantly improved the capabilities of image editing tools, enabling the creation of photorealistic and semantically informed forged regions that are nearly indistinguishable from authentic imagery, presenting new challenges in digital forensics and media credibility. While current image forensic techniques are adept at localizing forged regions produced by traditional image manipulation methods, current capabilities struggle to localize regions created by diffusion-based techniques. To bridge this gap, we present a novel framework that integrates a multimodal Large Language Model (LLM) for enhanced reasoning capabilities to localize tampered regions in images produced by diffusion model-based editing methods. By leveraging the contextual and semantic strengths of LLMs, our framework achieves promising results on MagicBrush, AutoSplice, and PerfBrush (novel diffusion-based dataset) datasets, outperforming previous approaches in mIoU and F1-score metrics. Notably, our method excels on the PerfBrush dataset, a self-constructed test set featuring previously unseen types of edits. Here, where traditional methods typically falter, achieving markedly low scores, our approach demonstrates promising performance.
Related papers
- PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models [80.98455219375862]
We present the first text-based image editing approach for object parts based on pre-trained diffusion models.
Our approach is preferred by users 77-90% of the time in conducted user studies.
arXiv Detail & Related papers (2025-02-06T13:08:43Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - Enhancing Text-to-Image Editing via Hybrid Mask-Informed Fusion [61.42732844499658]
This paper systematically improves the text-guided image editing techniques based on diffusion models.
We incorporate human annotation as an external knowledge to confine editing within a Mask-informed'' region.
arXiv Detail & Related papers (2024-05-24T07:53:59Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks.
We provide an exhaustive overview of existing methods using diffusion models for image editing.
To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval.
arXiv Detail & Related papers (2024-02-27T14:07:09Z) - LIME: Localized Image Editing via Attention Regularization in Diffusion Models [69.33072075580483]
This paper introduces LIME for localized image editing in diffusion models.
LIME does not require user-specified regions of interest (RoI) or additional text input, but rather employs features from pre-trained methods and a straightforward clustering method to obtain precise editing mask.
We propose a novel cross-attention regularization technique that penalizes unrelated cross-attention scores in the RoI during the denoising steps, ensuring localized edits.
arXiv Detail & Related papers (2023-12-14T18:59:59Z) - Blended Latent Diffusion [18.043090347648157]
We present an accelerated solution to the task of local text-driven editing of generic images, where the desired edits are confined to a user-provided mask.
Our solution leverages a recent text-to-image Latent Diffusion Model (LDM), which speeds up diffusion by operating in a lower-dimensional latent space.
arXiv Detail & Related papers (2022-06-06T17:58:04Z) - Blended Diffusion for Text-driven Editing of Natural Images [18.664733153082146]
We introduce the first solution for performing local (region-based) edits in generic natural images.
We achieve our goal by leveraging and combining a pretrained language-image model (CLIP)
To seamlessly fuse the edited region with the unchanged parts of the image, we spatially blend noised versions of the input image with the local text-guided diffusion latent.
arXiv Detail & Related papers (2021-11-29T18:58:49Z) - Look here! A parametric learning based approach to redirect visual
attention [49.609412873346386]
We introduce an automatic method to make an image region more attention-capturing via subtle image edits.
Our model predicts a distinct set of global parametric transformations to be applied to the foreground and background image regions.
Our edits enable inference at interactive rates on any image size, and easily generalize to videos.
arXiv Detail & Related papers (2020-08-12T16:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.