論文の概要: VIRUS-NeRF -- Vision, InfraRed and UltraSonic based Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2403.09477v2
- Date: Wed, 14 Aug 2024 12:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:56:46.056082
- Title: VIRUS-NeRF -- Vision, InfraRed and UltraSonic based Neural Radiance Fields
- Title(参考訳): VIRUS-NeRF --視覚・赤外・超音速ベースニューラルラジアンスフィールド
- Authors: Nicolaj Schmid, Cornelius von Einem, Cesar Cadena, Roland Siegwart, Lorenz Hruby, Florian Tschopp,
- Abstract要約: 本稿では,超音波や赤外線による飛行時間センサなどの高効率な低分解能レンジセンサを提案する。
VIRUS-NeRFは、超音波と赤外線センサーの深さ測定を取り入れて、光線マーチングに使用される占有格子を更新する。
- 参考スコア(独自算出の注目度): 24.151647704246013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous mobile robots are an increasingly integral part of modern factory and warehouse operations. Obstacle detection, avoidance and path planning are critical safety-relevant tasks, which are often solved using expensive LiDAR sensors and depth cameras. We propose to use cost-effective low-resolution ranging sensors, such as ultrasonic and infrared time-of-flight sensors by developing VIRUS-NeRF - Vision, InfraRed, and UltraSonic based Neural Radiance Fields. Building upon Instant Neural Graphics Primitives with a Multiresolution Hash Encoding (Instant-NGP), VIRUS-NeRF incorporates depth measurements from ultrasonic and infrared sensors and utilizes them to update the occupancy grid used for ray marching. Experimental evaluation in 2D demonstrates that VIRUS-NeRF achieves comparable mapping performance to LiDAR point clouds regarding coverage. Notably, in small environments, its accuracy aligns with that of LiDAR measurements, while in larger ones, it is bounded by the utilized ultrasonic sensors. An in-depth ablation study reveals that adding ultrasonic and infrared sensors is highly effective when dealing with sparse data and low view variation. Further, the proposed occupancy grid of VIRUS-NeRF improves the mapping capabilities and increases the training speed by 46% compared to Instant-NGP. Overall, VIRUS-NeRF presents a promising approach for cost-effective local mapping in mobile robotics, with potential applications in safety and navigation tasks. The code can be found at https://github.com/ethz-asl/virus nerf.
- Abstract(参考訳): 自律型移動ロボットは、現代の工場や倉庫業務において、ますます不可欠な存在になりつつある。
障害物検出、回避、経路計画は、しばしば高価なLiDARセンサーと深度カメラを用いて解決される安全関連タスクである。
VIRUS-NeRF-Vision, InfraRed, UltraSonic-based Neural Radiance Fields を開発した。
Instant Neural Graphics Primitives with a Multi resolution Hash Encoding (Instant-NGP) をベースとして、VIRUS-NeRFは超音波と赤外線センサーの深さ測定を取り入れ、光線マーキングに使用される占有格子を更新する。
2Dの実験的評価は、VIRUS-NeRFがカバー範囲に関するLiDAR点雲に匹敵するマッピング性能を達成していることを示している。
特に小さな環境では、その精度はLiDARの測定値と一致しているが、より大きな環境では、利用した超音波センサーによって拘束される。
In-depth ablation studyによると、スパースデータと低視野変動を扱う場合、超音波と赤外線センサーの追加は極めて効果的である。
さらに、VIRUS-NeRFの占有グリッドは、Instant-NGPと比較してマッピング能力を改善し、トレーニング速度を46%向上させる。
全体として、VIRUS-NeRFはモバイルロボティクスにおけるコスト効率の良いローカルマッピングのための有望なアプローチを示し、安全性とナビゲーションタスクに潜在的に適用できる可能性がある。
コードはhttps://github.com/ethz-asl/virus nerfで見ることができる。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - MDPose: Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler
Signatures [4.92674421365689]
WiFiマイクロドップラーシグネチャに基づくヒト骨格運動再建のための新しいフレームワークであるMDPoseを提案する。
17個のキーポイントを持つ骨格モデルを再構築することで、人間の活動を追跡する効果的なソリューションを提供する。
MDPoseは最先端のRFベースのポーズ推定システムより優れている。
論文 参考訳(メタデータ) (2022-01-11T21:46:28Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - All-Weather Object Recognition Using Radar and Infrared Sensing [1.7513645771137178]
この論文は、物体を認識するために、長波偏光赤外線(IR)画像とイメージングレーダに基づく新しいセンシング開発を探求する。
まず、偏光赤外データを用いたストークスパラメータに基づく手法を開発し、深層ニューラルネットワークを用いた車両の認識を行った。
第2に、低THzレーダセンサで捉えたパワースペクトルのみを用いて、制御されたシナリオで物体認識を行う可能性について検討した。
最後に、悪天候下で車両を検出するレーダーロバスト性を示す多くの異なる気象シナリオを備えた、"ワイルド"に新しい大規模なデータセットを作成しました。
論文 参考訳(メタデータ) (2020-10-30T14:16:39Z) - Super Low Resolution RF Powered Accelerometers for Alerting on
Hospitalized Patient Bed Exits [3.2654923574107357]
転倒は重篤な結果であり、高齢者を介護する急性病院や老人ホームで流行している。転倒のリスクを軽減するための技術介入は、自動でベッドからのイベントを監視し、医療従事者にタイムリーな監視を提供するよう警告する。
患者活動に関連する周波数領域情報は, 主に低頻度で存在している。
無線周波数識別(RFID)技術を用いた電池レスセンシング方式について検討し,病院ガウンなどの衣服への便利な統合の可能性について検討した。
論文 参考訳(メタデータ) (2020-03-19T00:58:30Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
本稿では,深層学習による人的存在検出における環境無線周波数(RF)信号の利用について検討する。
WiFi信号を例として,受信機で取得したチャネル状態情報(CSI)が伝搬環境に関する豊富な情報を含んでいることを示す。
畳み込みニューラルネットワーク(CNN)は、大きさと位相情報の両方を適切に訓練し、信頼性の高い存在検出を実現するように設計されている。
論文 参考訳(メタデータ) (2020-02-13T20:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。