Code Revert Prediction with Graph Neural Networks: A Case Study at J.P. Morgan Chase
- URL: http://arxiv.org/abs/2403.09507v1
- Date: Thu, 14 Mar 2024 15:54:29 GMT
- Title: Code Revert Prediction with Graph Neural Networks: A Case Study at J.P. Morgan Chase
- Authors: Yulong Pei, Salwa Alamir, Rares Dolga, Sameena Shah,
- Abstract summary: Code revert prediction aims to forecast or predict the likelihood of code changes being reverted or rolled back in software development.
Previous methods for code defect detection relied on independent features but ignored relationships between code scripts.
This paper presents a systematic empirical study for code revert prediction that integrates the code import graph with code features.
- Score: 10.961209762486684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code revert prediction, a specialized form of software defect detection, aims to forecast or predict the likelihood of code changes being reverted or rolled back in software development. This task is very important in practice because by identifying code changes that are more prone to being reverted, developers and project managers can proactively take measures to prevent issues, improve code quality, and optimize development processes. However, compared to code defect detection, code revert prediction has been rarely studied in previous research. Additionally, many previous methods for code defect detection relied on independent features but ignored relationships between code scripts. Moreover, new challenges are introduced due to constraints in an industry setting such as company regulation, limited features and large-scale codebase. To overcome these limitations, this paper presents a systematic empirical study for code revert prediction that integrates the code import graph with code features. Different strategies to address anomalies and data imbalance have been implemented including graph neural networks with imbalance classification and anomaly detection. We conduct the experiments on real-world code commit data within J.P. Morgan Chase which is extremely imbalanced in order to make a comprehensive comparison of these different approaches for the code revert prediction problem.
Related papers
- LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoder is a continuous learning framework for issue code reproduction.
Our results show a 20% improvement in issue reproduction rates over existing SOTA methods.
arXiv Detail & Related papers (2024-11-21T08:49:23Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
We propose a self-refinement method aimed at improving the reliability of code generated by LLMs.
Our approach is based on targeted Verification Questions (VQs) to identify potential bugs within the initial code.
Our method attempts to repair these potential bugs by re-prompting the LLM with the targeted VQs and the initial code.
arXiv Detail & Related papers (2024-05-22T19:02:50Z) - Mining Action Rules for Defect Reduction Planning [14.40839500239476]
We introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models.
We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects.
Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level.
arXiv Detail & Related papers (2024-05-22T15:31:09Z) - BAFLineDP: Code Bilinear Attention Fusion Framework for Line-Level
Defect Prediction [0.0]
This paper presents a line-level defect prediction method grounded in a code bilinear attention fusion framework (BAFLineDP)
Our results demonstrate that BAFLineDP outperforms current advanced file-level and line-level defect prediction approaches.
arXiv Detail & Related papers (2024-02-11T09:01:42Z) - Predicting Line-Level Defects by Capturing Code Contexts with
Hierarchical Transformers [4.73194777046253]
Bugsplorer is a novel deep-learning technique for line-level defect prediction.
It can rank the first 20% defective lines within the top 1-3% suspicious lines.
It has the potential to significantly reduce SQA costs by ranking defective lines higher.
arXiv Detail & Related papers (2023-12-19T06:25:04Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Refining neural network predictions using background knowledge [68.35246878394702]
We show we can use logical background knowledge in learning system to compensate for a lack of labeled training data.
We introduce differentiable refinement functions that find a corrected prediction close to the original prediction.
This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
arXiv Detail & Related papers (2022-06-10T10:17:59Z) - Graph-Based Machine Learning Improves Just-in-Time Defect Prediction [0.38073142980732994]
We use graph-based machine learning to improve Just-In-Time (JIT) defect prediction.
We show that our best model can predict whether or not a code change will lead to a defect with an F1 score as high as 77.55%.
This represents a 152% higher F1 score and a 3% higher MCC over the state-of-the-art JIT defect prediction.
arXiv Detail & Related papers (2021-10-11T16:00:02Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
We introduce APPS, a benchmark for code generation.
Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges.
Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems.
arXiv Detail & Related papers (2021-05-20T17:58:42Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
Predictive coding is an influential theory of cortical function which posits that the principal computation the brain performs is the minimization of prediction errors.
Standard implementations of the algorithm still involve potentially neurally implausible features such as identical forward and backward weights, backward nonlinear derivatives, and 1-1 error unit connectivity.
In this paper, we show that these features are not integral to the algorithm and can be removed either directly or through learning additional sets of parameters with Hebbian update rules without noticeable harm to learning performance.
arXiv Detail & Related papers (2020-10-02T15:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.