Mining Action Rules for Defect Reduction Planning
- URL: http://arxiv.org/abs/2405.13740v1
- Date: Wed, 22 May 2024 15:31:09 GMT
- Title: Mining Action Rules for Defect Reduction Planning
- Authors: Khouloud Oueslati, Gabriel Laberge, Maxime Lamothe, Foutse Khomh,
- Abstract summary: We introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models.
We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects.
Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level.
- Score: 14.40839500239476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defect reduction planning plays a vital role in enhancing software quality and minimizing software maintenance costs. By training a black box machine learning model and "explaining" its predictions, explainable AI for software engineering aims to identify the code characteristics that impact maintenance risks. However, post-hoc explanations do not always faithfully reflect what the original model computes. In this paper, we introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models. By leveraging action rules, CounterACT provides a course of action that can be considered as a counterfactual explanation for the class (e.g., buggy or not buggy) assigned to a piece of code. We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects. Our evaluation is based on (a) overlap scores between proposed code changes and actual developer modifications; (b) improvement scores in future releases; and (c) the precision, recall, and F1-score of the plans. Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level (median 95%) and commit level (median 85.97%), and they offer better trade-off between precision and recall (median F1-score 88.12%). Finally, we venture beyond planning and explore leveraging Large Language models (LLM) for generating code edits from our generated plans. Our results show that suggested LLM code edits supported by our plans are actionable and are more likely to pass relevant test cases than vanilla LLM code recommendations.
Related papers
- Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
This paper proposes a novel method, Predictive-Decoding, that leverages Model Predictive Control to enhance planning accuracy.
Our experiments show significant improvements in a wide range of tasks for math, coding, and agents.
arXiv Detail & Related papers (2024-10-22T17:13:38Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - RePair: Automated Program Repair with Process-based Feedback [28.017321930042694]
We show how small-scale language models (LM) can achieve excellent performance through process supervision and feedback.
We develop a reward model that serves as a critic, providing feedback for the fine-tuned LM's action.
The results show that process-based not only outperforms larger outcome-based generation methods, but also nearly matches the performance of closed-source commercial large-scale LMs.
arXiv Detail & Related papers (2024-08-21T02:53:23Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Code Revert Prediction with Graph Neural Networks: A Case Study at J.P. Morgan Chase [10.961209762486684]
Code revert prediction aims to forecast or predict the likelihood of code changes being reverted or rolled back in software development.
Previous methods for code defect detection relied on independent features but ignored relationships between code scripts.
This paper presents a systematic empirical study for code revert prediction that integrates the code import graph with code features.
arXiv Detail & Related papers (2024-03-14T15:54:29Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
Large language models (LLMs) are increasingly used to solve various programming tasks.
We show that the task is difficult as it requires the model to learn long-range code relationships.
We propose a technique to address these challenges with a new approach for querying and fine-tuning LLMs.
arXiv Detail & Related papers (2024-02-19T18:35:40Z) - Tuning Language Models by Proxy [110.49482736590907]
We introduce proxy-tuning, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the same end as direct tuning.
Our method tunes a smaller LM, then applies the difference between the predictions of the small tuned and untuned LMs to shift the original predictions of the larger untuned model in the direction of tuning.
arXiv Detail & Related papers (2024-01-16T18:49:55Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness.
Inspired by the findings that $textitoutcome supervision for guided decoding essentially acts as a value model, we propose Outcome-supervised Value Model (OVM)
Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model.
arXiv Detail & Related papers (2023-11-16T09:56:28Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.