Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability
- URL: http://arxiv.org/abs/2403.09548v1
- Date: Thu, 14 Mar 2024 16:35:43 GMT
- Title: Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability
- Authors: João Manoel Herrera Pinheiro, Marcelo Becker,
- Abstract summary: This study focuses on studying the performance of different machine learning algorithms based on boosting to predict breast cancer.
The main objective of this study is to use state-of-the-art boosting algorithms such as AdaBoost, XGBoost, CatBoost and LightGBM to predict and diagnose breast cancer.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer is one of the diseases that kill the most women in the world, with breast cancer being responsible for the highest number of cancer cases and consequently deaths. However, it can be prevented by early detection and, consequently, early treatment. Any development for detection or perdition this kind of cancer is important for a better healthy life. Many studies focus on a model with high accuracy in cancer prediction, but sometimes accuracy alone may not always be a reliable metric. This study implies an investigative approach to studying the performance of different machine learning algorithms based on boosting to predict breast cancer focusing on the recall metric. Boosting machine learning algorithms has been proven to be an effective tool for detecting medical diseases. The dataset of the University of California, Irvine (UCI) repository has been utilized to train and test the model classifier that contains their attributes. The main objective of this study is to use state-of-the-art boosting algorithms such as AdaBoost, XGBoost, CatBoost and LightGBM to predict and diagnose breast cancer and to find the most effective metric regarding recall, ROC-AUC, and confusion matrix. Furthermore, our study is the first to use these four boosting algorithms with Optuna, a library for hyperparameter optimization, and the SHAP method to improve the interpretability of our model, which can be used as a support to identify and predict breast cancer. We were able to improve AUC or recall for all the models and reduce the False Negative for AdaBoost and LigthGBM the final AUC were more than 99.41\% for all models.
Related papers
- Deep Transfer Learning for Breast Cancer Classification [0.0]
Deep transfer learning has emerged as a promising technique for improving breast cancer classification.
In this study, we examine the use of a VGG, Vision Transformers (ViT) and Resnet to classify images for Invasive Ductal Carcinoma (IDC) cancer.
The result shows a great advantage of Resnet-34 with an accuracy of $90.40%$ in classifying cancer images.
arXiv Detail & Related papers (2024-09-05T15:54:41Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
We evaluate and compare the classification accuracy, precision, recall, and F-1 scores of five different machine learning methods.
XGBoost achieved the best model accuracy, which is 97%.
arXiv Detail & Related papers (2024-04-06T17:23:21Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
Deep feature transfer learning is used as the main idea of the proposed CAD system's feature extractor.
Inception-ResNet-v2 has shown the best feature extraction capability in the case of breast cancer histopathology images.
In the classification phase, the ensemble of CatBoost, XGBoost and LightGBM has provided the best average accuracy.
arXiv Detail & Related papers (2022-09-03T09:27:00Z) - Machine Learning Approaches to Predict Breast Cancer: Bangladesh
Perspective [0.0]
This study focuses on finding the best algorithm that can forecast breast cancer with maximum accuracy in terms of its classes.
After implementing the model, this study achieved the best model accuracy, 94% on Random Forest and XGBoost.
arXiv Detail & Related papers (2022-06-30T01:44:53Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
We have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not.
Our 4 layers-PCA network has obtained the best accuracy of 100% with a mean of 90.48% on the BCCD dataset.
arXiv Detail & Related papers (2022-06-18T06:17:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.