Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
- URL: http://arxiv.org/abs/2403.09570v3
- Date: Mon, 23 Sep 2024 16:10:44 GMT
- Title: Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
- Authors: Yunchuan Zhang, Sangwoo Park, Osvaldo Simeone,
- Abstract summary: This paper introduces a novel information-theoretic acquisition function that balances the need to acquire information about the current task with the goal of collecting information transferable to future tasks.
Results show that the proposed acquisition strategy can significantly improve the optimization efficiency as soon as a sufficient number of tasks is processed.
- Score: 36.14499894307206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications, ranging from logistics to engineering, a designer is faced with a sequence of optimization tasks for which the objectives are in the form of black-box functions that are costly to evaluate. Furthermore, higher-fidelity evaluations of the optimization objectives often entail a larger cost. Existing multi-fidelity black-box optimization strategies select candidate solutions and fidelity levels with the goal of maximizing the information about the optimal value or the optimal solution for the current task. Assuming that successive optimization tasks are related, this paper introduces a novel information-theoretic acquisition function that balances the need to acquire information about the current task with the goal of collecting information transferable to future tasks. The proposed method transfers across tasks distributions over parameters of a Gaussian process surrogate model by implementing particle-based variational Bayesian updates. Theoretical insights based on the analysis of the expected regret substantiate the benefits of acquiring transferable knowledge across tasks. Furthermore, experimental results across synthetic and real-world examples reveal that the proposed acquisition strategy that caters to future tasks can significantly improve the optimization efficiency as soon as a sufficient number of tasks is processed.
Related papers
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
We introduce the first Inverse Transfer Multiobjective (invTrEMO)
InvTrEMO harnesses the common objective functions in many prevalent areas, even when decision spaces do not precisely align between tasks.
InvTrEMO yields high-precision inverse models as a significant byproduct, enabling the generation of tailored solutions on-demand.
arXiv Detail & Related papers (2023-12-22T14:12:18Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
We introduce the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its behavior and properties, and demonstrate its viability on various problems.
This method presents decision makers with a robust pool of promising design decisions and helps them better understand the space of good solutions.
arXiv Detail & Related papers (2023-06-23T20:42:22Z) - DeepHive: A multi-agent reinforcement learning approach for automated
discovery of swarm-based optimization policies [0.0]
The state of each agent within the swarm is defined as its current position and function value within a design space.
The proposed approach is tested on various benchmark optimization functions and compared to the performance of other global optimization strategies.
arXiv Detail & Related papers (2023-03-29T18:08:08Z) - Transfer Learning for Bayesian Optimization: A Survey [29.229660973338145]
Black-box optimization is a powerful tool that models and optimize such expensive "black-box" functions.
Researchers in the BO community propose to incorporate the spirit of transfer learning to accelerate optimization process.
arXiv Detail & Related papers (2023-02-12T14:37:25Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Resource Aware Multifidelity Active Learning for Efficient Optimization [0.8717253904965373]
This paper introduces the Resource Aware Active Learning (RAAL) strategy to accelerate the optimization of black box functions.
The RAAL strategy optimally seeds multiple points at each allowing for a major speed up of the optimization task.
arXiv Detail & Related papers (2020-07-09T10:01:32Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.