Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems
- URL: http://arxiv.org/abs/2306.13780v1
- Date: Fri, 23 Jun 2023 20:42:22 GMT
- Title: Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems
- Authors: Eric Hans Lee, Bolong Cheng, Michael McCourt
- Abstract summary: We introduce the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its behavior and properties, and demonstrate its viability on various problems.
This method presents decision makers with a robust pool of promising design decisions and helps them better understand the space of good solutions.
- Score: 4.732915763557618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiently solving multi-objective optimization problems for simulation
optimization of important scientific and engineering applications such as
materials design is becoming an increasingly important research topic. This is
due largely to the expensive costs associated with said applications, and the
resulting need for sample-efficient, multiobjective optimization methods that
efficiently explore the Pareto frontier to expose a promising set of design
solutions. We propose moving away from using explicit optimization to identify
the Pareto frontier and instead suggest searching for a diverse set of outcomes
that satisfy user-specified performance criteria. This method presents decision
makers with a robust pool of promising design decisions and helps them better
understand the space of good solutions. To achieve this outcome, we introduce
the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its
behavior and properties, and demonstrate its viability on various problems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Solving the Food-Energy-Water Nexus Problem via Intelligent Optimization Algorithms [46.48853432592689]
Food-Energy-Water systems are intricately linked among food, energy and water that impact each other.
They usually involve a huge number of decision variables and many conflicting objectives to be optimized.
In this paper, we solve a Food-Energy-Water optimization problem by using the state-of-art intelligent optimization methods and compare their performance.
arXiv Detail & Related papers (2024-04-10T06:19:19Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Preference-Aware Constrained Multi-Objective Bayesian Optimization [32.95116113569985]
This paper addresses the problem of constrained multi-objective optimization over black-box objective functions with practitioner-specified preferences over the objectives when a large fraction of the input space is infeasible (i.e., violates constraints)
The key challenges include the huge size of the design space, multiple objectives and large number of constraints, and the small fraction of feasible input designs which can be identified only after performing expensive simulations.
We propose a novel and efficient preference-aware constrained multi-objective Bayesian optimization approach referred to as PAC-MOO to address these challenges.
arXiv Detail & Related papers (2023-03-23T04:46:49Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
We propose a novel information-theoretic acquisition function for BO called Joint Entropy Search.
We showcase the effectiveness of this new approach on a range of synthetic and real-world problems in terms of the hypervolume and its weighted variants.
arXiv Detail & Related papers (2022-10-06T13:19:08Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.