論文の概要: uaMix-MAE: Efficient Tuning of Pretrained Audio Transformers with Unsupervised Audio Mixtures
- arxiv url: http://arxiv.org/abs/2403.09579v1
- Date: Thu, 14 Mar 2024 17:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 19:38:09.150017
- Title: uaMix-MAE: Efficient Tuning of Pretrained Audio Transformers with Unsupervised Audio Mixtures
- Title(参考訳): uaMix-MAE:教師なしオーディオミキサーを用いた事前学習型オーディオ変換器の効率的なチューニング
- Authors: Afrina Tabassum, Dung Tran, Trung Dang, Ismini Lourentzou, Kazuhito Koishida,
- Abstract要約: Masked Autoencoders (MAE) はラベルのないデータからリッチな低レベル表現を学習する。
IDは高レベルのセマンティクスを強調し、MAEのアノテーション要求を緩和する潜在的なソリューションを提供する。
我々は、教師なしオーディオミキシングを利用する効率的なIDチューニング戦略であるuaMix-MAEを紹介する。
- 参考スコア(独自算出の注目度): 16.59243476473915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Masked Autoencoders (MAEs) learn rich low-level representations from unlabeled data but require substantial labeled data to effectively adapt to downstream tasks. Conversely, Instance Discrimination (ID) emphasizes high-level semantics, offering a potential solution to alleviate annotation requirements in MAEs. Although combining these two approaches can address downstream tasks with limited labeled data, naively integrating ID into MAEs leads to extended training times and high computational costs. To address this challenge, we introduce uaMix-MAE, an efficient ID tuning strategy that leverages unsupervised audio mixtures. Utilizing contrastive tuning, uaMix-MAE aligns the representations of pretrained MAEs, thereby facilitating effective adaptation to task-specific semantics. To optimize the model with small amounts of unlabeled data, we propose an audio mixing technique that manipulates audio samples in both input and virtual label spaces. Experiments in low/few-shot settings demonstrate that \modelname achieves 4-6% accuracy improvements over various benchmarks when tuned with limited unlabeled data, such as AudioSet-20K. Code is available at https://github.com/PLAN-Lab/uamix-MAE
- Abstract(参考訳): Masked Autoencoders (MAE) はラベルのないデータから豊富な低レベル表現を学習するが、下流のタスクに効果的に適応するためにラベル付きデータを必要とする。
逆に、インスタンス識別(ID)は高レベルのセマンティクスを強調し、MAEのアノテーション要件を緩和する潜在的なソリューションを提供する。
これら2つのアプローチを組み合わせることで、ラベル付きデータに制限のあるダウンストリームタスクに対処できるが、IDをMAEに統合することで、トレーニング時間と計算コストの増大につながる。
この課題に対処するために、教師なしオーディオミックスを利用した効率的なIDチューニング戦略であるuaMix-MAEを導入する。
対照的なチューニングを利用することで、uaMix-MAEは事前訓練されたMAEの表現を調整し、タスク固有のセマンティクスへの効果的な適応を容易にする。
少ないラベル付きデータでモデルを最適化するために,入力空間と仮想ラベル空間の両方で音声サンプルを操作するオーディオミキシング手法を提案する。
ローショット/フェーショット設定の実験では、AudioSet-20Kのような限定されたラベル付きデータでチューニングすると、さまざまなベンチマークに対して、 \modelnameが4-6%の精度向上を実現している。
コードはhttps://github.com/PLAN-Lab/uamix-MAEで入手できる。
関連論文リスト
- Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection [84.78475642696137]
実世界のデータにノイズラベルが存在することは、ディープラーニングモデルの性能に悪影響を及ぼす。
サブグループに基づく正対選択(SGPS)を用いたノイズロストDMLフレームワークを提案する。
SGPSは、ノイズのあるサンプルに対して信頼性の高い正のペアを構築し、サンプルの利用率を高める。
論文 参考訳(メタデータ) (2025-01-19T14:41:55Z) - Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data [69.7174072745851]
音声分類データセットを合成データで拡張する新しい手法であるSynthioを提案する。
最初の課題を克服するために、好みの最適化を用いて、T2Aモデルの世代と小規模データセットを整列する。
2つ目の課題に対処するために,大規模言語モデルの推論能力を活用する新しいキャプション生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T22:05:36Z) - Universal Sound Separation with Self-Supervised Audio Masked Autoencoder [35.560261097213846]
本稿では,音声マスク付きオートエンコーダ(A-MAE)を汎用的な音声分離システムに統合する自己教師付き事前学習モデルを提案する。
提案手法は,最先端のResUNetベースUSSモデルの分離性能の向上に成功している。
論文 参考訳(メタデータ) (2024-07-16T14:11:44Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
コントラスト学習を用いて、各音声サンプルではなく、各機械IDの音声表現を洗練する。
提案手法では、コントラスト学習を用いて音声表現モデルを事前学習する。
実験の結果,本手法はコントラスト学習や自己教師型分類を用いて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-07T11:08:31Z) - Learning from Training Dynamics: Identifying Mislabeled Data Beyond
Manually Designed Features [43.41573458276422]
LSTMネットワークを例として,ノイズ検出を応用した新しい学習ベースソリューションを提案する。
提案手法は、合成ラベル雑音を用いたデータセットを用いて、教師あり方式でノイズ検出器を訓練する。
提案手法は, 各種データセットの誤ラベルサンプルを, さらなる適応を伴わずに, 精度良く検出できることが示唆された。
論文 参考訳(メタデータ) (2022-12-19T09:39:30Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
ノイズの多いラベルでディープニューラルネットワーク(DNN)を訓練することは事実上難しい。
従来の取り組みでは、統合されたデノナイジングフローで部分データや完全なデータを扱う傾向があります。
本研究では,ノイズの多いデータを分割・分散的に処理するために,CREMAと呼ばれる粗大な頑健な学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-23T02:06:38Z) - SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation [58.61946589036262]
本稿では,ブラックボックスモデルを用いて,擬似ラベル付きターゲットデータのみにアクセス可能な実用的なドメイン適応(DA)セマンティックセマンティックセマンティクス問題について検討する。
ドメインギャップと2つのドメイン間のラベルシフトのため、擬似ラベル付きターゲットデータには、クローズドセットとオープンセットのラベルノイズが混在している。
DAセマンティックセグメンテーションにおける混合雑音分布をモデル化し、SimTの推定として問題を定式化するための単純なノイズ遷移行列(SimT)を提案する。
論文 参考訳(メタデータ) (2022-03-29T02:48:08Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixupは、決定境界を混合データで滑らかにすることで、ニューラルネットワークの一般化を改善する効率的なデータ拡張アプローチである。
本稿では,非結合型正規化器(Decoupled Mixup, DM)を用いた効率的な混合目標関数を提案する。
DMは、ミキシングの本来の滑らかさを損なうことなく、硬質混合試料を適応的に利用して識別特性をマイニングすることができる。
論文 参考訳(メタデータ) (2022-03-21T07:12:18Z) - Environmental sound analysis with mixup based multitask learning and
cross-task fusion [0.12891210250935145]
音響シーン分類と音響イベント分類は 密接に関連している2つの課題です
本書では,上記の課題に対して二段階法を提案する。
提案手法は,音響シーンと音響イベント分類の相補的特徴を確認した。
論文 参考訳(メタデータ) (2021-03-30T05:11:53Z) - MixSpeech: Data Augmentation for Low-resource Automatic Speech
Recognition [54.84624870942339]
MixSpeechは、自動音声認識(ASR)のためのミックスアップに基づくシンプルで効果的なデータ拡張方法です。
mixspeechをlas(listen, attend, spell)とtransformerを含む2つのポピュラーなエンドツーエンド音声認識モデルに適用した。
実験の結果,MixSpeechはデータ拡張のないベースラインモデルよりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2021-02-25T03:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。