Algorithmic syntactic causal identification
- URL: http://arxiv.org/abs/2403.09580v1
- Date: Thu, 14 Mar 2024 17:14:53 GMT
- Title: Algorithmic syntactic causal identification
- Authors: Dhurim Cakiqi, Max A. Little,
- Abstract summary: Causal identification in causal Bayes nets (CBNs) is an important tool in causal inference.
Most existing formulations of causal identification using techniques such as d-separation and do-calculus are expressed within the mathematical language of classical probability theory.
We show that this restriction can be lifted by replacing the use of classical probability theory with the alternative axiomatic foundation of symmetric monoidal categories.
- Score: 0.8901073744693314
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal identification in causal Bayes nets (CBNs) is an important tool in causal inference allowing the derivation of interventional distributions from observational distributions where this is possible in principle. However, most existing formulations of causal identification using techniques such as d-separation and do-calculus are expressed within the mathematical language of classical probability theory on CBNs. However, there are many causal settings where probability theory and hence current causal identification techniques are inapplicable such as relational databases, dataflow programs such as hardware description languages, distributed systems and most modern machine learning algorithms. We show that this restriction can be lifted by replacing the use of classical probability theory with the alternative axiomatic foundation of symmetric monoidal categories. In this alternative axiomatization, we show how an unambiguous and clean distinction can be drawn between the general syntax of causal models and any specific semantic implementation of that causal model. This allows a purely syntactic algorithmic description of general causal identification by a translation of recent formulations of the general ID algorithm through fixing. Our description is given entirely in terms of the non-parametric ADMG structure specifying a causal model and the algebraic signature of the corresponding monoidal category, to which a sequence of manipulations is then applied so as to arrive at a modified monoidal category in which the desired, purely syntactic interventional causal model, is obtained. We use this idea to derive purely syntactic analogues of classical back-door and front-door causal adjustment, and illustrate an application to a more complex causal model.
Related papers
- Likelihood-based Differentiable Structure Learning [38.25218464260965]
Existing approaches to differentiable structure learning of directed acyclic graphs (DAGs) rely on strong identifiability assumptions.
We explain and remedy these issues by studying the behavior of differentiable acyclicity-constrained programs under general likelihoods.
arXiv Detail & Related papers (2024-10-08T16:08:24Z) - Generalized Criterion for Identifiability of Additive Noise Models Using Majorization [7.448620208767376]
We introduce a novel identifiability criterion for directed acyclic graph (DAG) models.
We demonstrate that this criterion extends and generalizes existing identifiability criteria.
We present a new algorithm for learning a topological ordering of variables.
arXiv Detail & Related papers (2024-04-08T02:18:57Z) - Invariant Causal Set Covering Machines [64.86459157191346]
Rule-based models, such as decision trees, appeal to practitioners due to their interpretable nature.
However, the learning algorithms that produce such models are often vulnerable to spurious associations and thus, they are not guaranteed to extract causally-relevant insights.
We propose Invariant Causal Set Covering Machines, an extension of the classical Set Covering Machine algorithm for conjunctions/disjunctions of binary-valued rules that provably avoids spurious associations.
arXiv Detail & Related papers (2023-06-07T20:52:01Z) - Sequential Learning of the Topological Ordering for the Linear
Non-Gaussian Acyclic Model with Parametric Noise [6.866717993664787]
We develop a novel sequential approach to estimate the causal ordering of a DAG.
We provide extensive numerical evidence to demonstrate that our procedure is scalable to cases with possibly thousands of nodes.
arXiv Detail & Related papers (2022-02-03T18:15:48Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.