論文の概要: Renovating Names in Open-Vocabulary Segmentation Benchmarks
- arxiv url: http://arxiv.org/abs/2403.09593v2
- Date: Fri, 24 May 2024 07:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:46:55.343807
- Title: Renovating Names in Open-Vocabulary Segmentation Benchmarks
- Title(参考訳): Open-Vocabulary Segmentationベンチマークにおける名前の更新
- Authors: Haiwen Huang, Songyou Peng, Dan Zhang, Andreas Geiger,
- Abstract要約: オープン語彙セグメンテーションベンチマーク(RENOVATE)における「改称」のためのフレームワークを提案する。
我々のフレームワークは、視覚セグメントごとに名前の質を高めるリネームモデルを備えている。
改良された名称は、最大15%の相対的な改善で、より強力なオープン語彙モデルをトレーニングするのに役立ちます。
- 参考スコア(独自算出の注目度): 31.243790558954288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Names are essential to both human cognition and vision-language models. Open-vocabulary models utilize class names as text prompts to generalize to categories unseen during training. However, the precision of these names is often overlooked in existing datasets. In this paper, we address this underexplored problem by presenting a framework for "renovating" names in open-vocabulary segmentation benchmarks (RENOVATE). Our framework features a renaming model that enhances the quality of names for each visual segment. Through experiments, we demonstrate that our renovated names help train stronger open-vocabulary models with up to 15% relative improvement and significantly enhance training efficiency with improved data quality. We also show that our renovated names improve evaluation by better measuring misclassification and enabling fine-grained model analysis. We will provide our code and relabelings for several popular segmentation datasets (MS COCO, ADE20K, Cityscapes) to the research community.
- Abstract(参考訳): 名前は人間の認知と視覚言語モデルの両方に必須である。
オープン語彙モデルは、訓練中に見えないカテゴリに一般化するテキストプロンプトとしてクラス名を利用する。
しかし、これらの名前の精度は、しばしば既存のデータセットで見過ごされる。
本稿では,オープンボキャブラリセグメンテーションベンチマーク(RENOVATE)における「リノベーション」の枠組みを提示することにより,この問題に対処する。
我々のフレームワークは、視覚セグメントごとに名前の質を高めるリネームモデルを備えている。
実験により, 改良された名称は, 最大15%の改善率でより強力なオープン語彙モデルを訓練し, データ品質を向上し, トレーニング効率を大幅に向上させることを示す。
また, 改名により, 誤分類の精度が向上し, きめ細かなモデル解析が可能となった。
私たちは、人気のあるセグメンテーションデータセット(MS COCO、ADE20K、Cityscapes)のコードを研究コミュニティに提供します。
関連論文リスト
- Multicultural Name Recognition For Previously Unseen Names [65.268245109828]
本論文は、人名の認識を改善することを目的としており、それは、誰かが生まれたり、名前を変えたりする際にも、成長できる多様なカテゴリーである。
私は103か国の名前を見て、モデルが異なる文化の名前でどれだけうまく機能するかを比較します。
文字入力と単語入力を組み合わせたモデルの方が単語のみのモデルより優れており,従来のNERモデルと比較して精度が向上する可能性がある。
論文 参考訳(メタデータ) (2024-01-23T17:58:38Z) - From Categories to Classifier: Name-Only Continual Learning by Exploring
the Web [125.75085825742092]
継続的な学習はしばしば、非現実的に時間がかかり、実際にコストがかかるという仮定である、広範な注釈付きデータセットの可用性に依存します。
時間とコストの制約により手動のアノテーションが禁止される、名前のみの連続学習と呼ばれる新しいパラダイムを探求する。
提案手法は,広範かつ進化を続けるインターネットを活用して,未処理のウェブ教師付きデータを検索・ダウンロードして画像分類を行う。
論文 参考訳(メタデータ) (2023-11-19T10:43:43Z) - NameGuess: Column Name Expansion for Tabular Data [28.557115822407294]
我々は列名を自然言語生成問題として拡張するための新しいタスクであるNameGuessを紹介した。
384K短縮カラムペアのトレーニングデータセットを作成します。
表の内容や列のヘッダー名を条件にすることで、自動回帰言語モデルを強化する。
論文 参考訳(メタデータ) (2023-10-19T23:11:37Z) - Evolving Dictionary Representation for Few-shot Class-incremental
Learning [34.887690018011675]
数発クラス増分学習(FSCIL)という,挑戦的で実践的な連続学習シナリオに取り組む。
FSCILでは、ラベル付きデータはベースセッションでクラスに対して与えられるが、新しいインクリメンタルクラスでは非常に限定されたラベル付きインスタンスが利用できる。
本稿では,辞書学習と視覚表現学習を組み合わせたハイブリッド学習アーキテクチャであるディープ辞書学習を提案する。
論文 参考訳(メタデータ) (2023-05-03T04:30:34Z) - Learning to Name Classes for Vision and Language Models [57.0059455405424]
大規模な視覚と言語モデルは、クラス固有のテキストクエリを画像コンテンツにマッピングすることで、印象的なゼロショット認識性能を達成することができる。
視覚的コンテンツの機能として,各クラスに対して最適な単語埋め込みを学習するために,利用可能なデータを活用することを提案する。
凍結したモデルに新しい単語の埋め込みを学習することで、新しいクラスに対してゼロショットの能力を保ち、新しいデータセットにモデルを適応しやすくし、潜在的に誤った、非記述的、曖昧なクラス名を調整することができる。
論文 参考訳(メタデータ) (2023-04-04T14:34:44Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
企業名文字列の埋め込みである教師付き学習を通じて,Siamese LSTM Network を抽出する手法を提案する。
私たちは、ラベル付けされるサンプルを優先するActive Learningアプローチが、より効率的な全体的な学習パイプラインをもたらす方法を分析します。
論文 参考訳(メタデータ) (2023-03-07T15:07:57Z) - The Fellowship of the Authors: Disambiguating Names from Social Network
Context [2.3605348648054454]
各エンティティに関する広範なテキスト記述を持つオーソリティリストは、欠落しており、曖昧な名前のエンティティである。
BERTをベースとした参照表現と,さまざまなグラフ誘導戦略を組み合わせて,教師付きクラスタ推論手法と教師なしクラスタ推論手法を実験する。
ドメイン内言語モデルの事前学習は,特により大きなコーパスに対して,参照表現を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2022-08-31T21:51:55Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
我々は、追加のラベルのないデータを活用することで、検索性能を向上させるための自己学習フレームワークSLADEを提案する。
まず、ラベル付きデータに基づいて教師モデルをトレーニングし、ラベルなしデータに対して擬似ラベルを生成する。
次に、最終機能埋め込みを生成するために、ラベルと擬似ラベルの両方で学生モデルをトレーニングします。
論文 参考訳(メタデータ) (2020-11-20T08:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。