論文の概要: Retrieval-Enhanced Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2410.13118v1
- Date: Thu, 17 Oct 2024 01:12:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:07.187050
- Title: Retrieval-Enhanced Named Entity Recognition
- Title(参考訳): Retrieval-Enhanced Named Entity Recognition
- Authors: Enzo Shiraishi, Raphael Y. de Camargo, Henrique L. P. Silva, Ronaldo C. Prati,
- Abstract要約: RENERは、In-Context Learningと情報検索技術に基づく自己回帰言語モデルを用いたエンティティ認識手法である。
実験の結果,CrossNERコレクションでは,提案手法を用いて最先端の性能を実現することができた。
- 参考スコア(独自算出の注目度): 1.2187048691454239
- License:
- Abstract: When combined with In-Context Learning, a technique that enables models to adapt to new tasks by incorporating task-specific examples or demonstrations directly within the input prompt, autoregressive language models have achieved good performance in a wide range of tasks and applications. However, this combination has not been properly explored in the context of named entity recognition, where the structure of this task poses unique challenges. We propose RENER (Retrieval-Enhanced Named Entity Recognition), a technique for named entity recognition using autoregressive language models based on In-Context Learning and information retrieval techniques. When presented with an input text, RENER fetches similar examples from a dataset of training examples that are used to enhance a language model to recognize named entities from this input text. RENER is modular and independent of the underlying language model and information retrieval algorithms. Experimental results show that in the CrossNER collection we achieve state-of-the-art performance with the proposed technique and that information retrieval can increase the F-score by up to 11 percentage points.
- Abstract(参考訳): In-Context Learningと組み合わせることで、タスク固有の例やデモを入力プロンプトに直接組み込むことで、モデルが新しいタスクに適応することを可能にする技術である。
しかし、この組み合わせは名前付きエンティティ認識の文脈では適切に検討されていない。
本稿では,Retrieval-Enhanced Named Entity Recognition(Retrieval-Enhanced Named Entity Recognition,RENER)を提案する。
入力テキストを提示すると、RENERは、この入力テキストから名前付きエンティティを認識するための言語モデルを強化するために使用されるトレーニングサンプルのデータセットから、同様のサンプルを取得する。
RENERはモジュラーであり、基礎となる言語モデルと情報検索アルゴリズムとは独立している。
実験の結果、CrossNERコレクションでは、提案手法により最先端の性能を実現し、情報検索によりFスコアを最大11ポイント向上できることがわかった。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models [0.0]
Few-Shot PromptingやIn-context Learningは、モデルが最小限の例でエンティティを認識できるようにする。
NERタスクにおけるGPT-4のような最先端モデルの評価を行い、その数ショットのパフォーマンスと完全に教師付きベンチマークを比較した。
論文 参考訳(メタデータ) (2024-08-28T13:42:28Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
数発のネストネストNERの設定に有効で革新的なICLフレームワークを導入する。
我々は、新しい実演選択機構であるEnDe retrieverを考案し、ICLプロンプトを改善する。
EnDe検索では,意味的類似性,境界類似性,ラベル類似性という3種類の表現学習を行うために,コントラスト学習を用いる。
論文 参考訳(メタデータ) (2024-02-02T06:57:53Z) - Informed Named Entity Recognition Decoding for Generative Language
Models [3.5323691899538128]
Informed Named Entity Recognition Decoding (iNERD) を提案する。
8つの名前付きエンティティ認識データセット上で5つの生成言語モデルを評価し、優れた結果を得るため、統合されたエンティティコーパス上でモデルを粗いチューニングを行い、その性能を向上させる。
論文 参考訳(メタデータ) (2023-08-15T14:16:29Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
企業名文字列の埋め込みである教師付き学習を通じて,Siamese LSTM Network を抽出する手法を提案する。
私たちは、ラベル付けされるサンプルを優先するActive Learningアプローチが、より効率的な全体的な学習パイプラインをもたらす方法を分析します。
論文 参考訳(メタデータ) (2023-03-07T15:07:57Z) - Dynamic Named Entity Recognition [5.9401550252715865]
動的名前付きエンティティ認識(DNER)という新しいタスクを紹介します。
DNERは、コンテキストを利用してエンティティを抽出するアルゴリズムの能力を評価するためのフレームワークを提供する。
本稿では,本課題に関連する課題と研究軸を反映したベースラインモデルと実験結果について述べる。
論文 参考訳(メタデータ) (2023-02-16T15:50:02Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - Improving Named Entity Recognition by External Context Retrieving and
Cooperative Learning [40.39647963185329]
文の外部コンテキストは,検索エンジンを通じて意味的関連テキストの集合を検索し,選択することで検索する。
その結果,検索ベースの入力ビューで計算された文脈表現は,性能が著しく向上することがわかった。
実験では、私たちのアプローチが5つのドメインにわたる8つのNERデータセットで最新のパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2021-05-08T09:45:21Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
ニューラルリレーション抽出(RE)に関連する言語特性を対象とした14の探索タスクを導入する。
私たちは、40以上の異なるエンコーダアーキテクチャと2つのデータセットでトレーニングされた言語的特徴の組み合わせによって学習された表現を研究するためにそれらを使用します。
アーキテクチャによって引き起こされるバイアスと言語的特徴の含意は、探索タスクのパフォーマンスにおいて明らかに表現されている。
論文 参考訳(メタデータ) (2020-04-17T09:17:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。