Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking
- URL: http://arxiv.org/abs/2403.09717v1
- Date: Tue, 12 Mar 2024 07:17:01 GMT
- Title: Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking
- Authors: Yiyang Gu, Yougen Zhou, Qin Chen, Ningning Zhou, Jie Zhou, Aimin Zhou, Liang He,
- Abstract summary: Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection.
Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis.
No explicit framework has been explored to guide the dialogue, which results in some useless communications.
- Score: 27.96718892323191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.
Related papers
- Multi-aspect Depression Severity Assessment via Inductive Dialogue System [5.156059061769101]
We present a novel task of multi-aspect depression severity assessment via an inductive dialogue system (MaDSA)
We propose a foundational system for MaDSA, which induces psychological dialogue responses with an auxiliary emotion classification task.
We synthesize the conversational dataset annotated with eight aspects of depression severity alongside emotion labels, proven robust via human evaluations.
arXiv Detail & Related papers (2024-10-29T08:00:08Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
This paper introduces the Agent Mental Clinic (AMC), a self-improving conversational agent system designed to enhance depression diagnosis through simulated dialogues between patient and psychiatrist agents.
We design a psychiatrist agent consisting of a tertiary memory structure, a dialogue control and a memory sampling module, fully leveraging the skills reflected by the psychiatrist agent, achieving great accuracy on depression risk and suicide risk diagnosis via conversation.
arXiv Detail & Related papers (2024-09-20T14:25:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Towards Reliable and Empathetic Depression-Diagnosis-Oriented Chats [15.36217265716081]
We propose an innovative definition and generation framework tailored explicitly for depression diagnosis dialogues.
The framework combines the reliability of task-oriented conversations with the appeal of empathy-related chit-chat.
Exhaustive experimental results indicate significant improvements in task completion and emotional support generation in depression diagnosis.
arXiv Detail & Related papers (2024-04-07T16:35:53Z) - Illuminate: A novel approach for depression detection with explainable
analysis and proactive therapy using prompt engineering [0.0]
This paper introduces a novel paradigm for depression detection and treatment using advanced Large Language Models (LLMs): Generative Pre-trained Transformer 4 (GPT-4), Llama 2 chat, and Gemini.
LLMs are fine-tuned with specialized prompts to diagnose, explain, and suggest therapeutic interventions for depression.
arXiv Detail & Related papers (2024-02-05T06:08:06Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
Empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation.
We propose the CASE model for empathetic dialogue generation.
arXiv Detail & Related papers (2022-08-18T14:28:38Z) - D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat [25.852922703368133]
In a depression-diagnosis-directed clinical session, doctors initiate a conversation with ample emotional support that guides the patients to expose their symptoms.
Due to the social stigma associated with mental illness, the dialogue data related to depression consultation and diagnosis are rarely disclosed.
We construct a Chinese dialogue dataset for Depression-Diagnosis-Oriented Chat which simulates the dialogue between doctors and patients during the diagnosis of depression.
arXiv Detail & Related papers (2022-05-24T03:54:22Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.