論文の概要: Prediction of readmission of patients by extracting biomedical concepts from clinical texts
- arxiv url: http://arxiv.org/abs/2403.09722v1
- Date: Tue, 12 Mar 2024 09:03:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:44:54.587889
- Title: Prediction of readmission of patients by extracting biomedical concepts from clinical texts
- Title(参考訳): 臨床テキストから生医学的概念を抽出した患者の寛解予測
- Authors: Rasoul Samani, Fahime Shahrokh, Mohammad Dehghani,
- Abstract要約: この研究は、68.9%のリコールスコアで、患者の再入院の確率を予測する上で、最も高いスコアを達成している。
様々な機械学習モデルの性能は、単語の袋と概念の袋という2つのアプローチを用いて評価されてきた。
- 参考スコア(独自算出の注目度): 0.26813152817733554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Today, the existence of a vast amount of electronic health data has created potential capacities for conducting studies aiming to improve the medical services provided to patients and reduce the costs of the healthcare system. One of the topics that has been receiving attention in the field of medicine in recent years is the identification of patients who are likely to be re-hospitalized shortly after being discharged from the hospital. This identification can help doctors choose appropriate treatment methods, thereby reducing the rate of patient re-hospitalization and resulting in effective treatment cost reduction. In this study, the prediction of patient re-hospitalization using text mining approaches and the processing of discharge report texts in the patient's electronic file has been discussed. To this end, the performance of various machine learning models has been evaluated using two approaches: bag of word and bag of concept, in the process of predicting patient readmission. Comparing the efficiency of these approaches has shown the superiority of the random forest model and the bag of concept approach over other machine learning models and approaches. This research has achieved the highest score in predicting the probability of patient re-hospitalization, with a recall score of 68.9%, compared to similar works that have utilized machine learning models in this field.
- Abstract(参考訳): 今日、大量の電子健康データが存在することが、患者に提供された医療サービスの改善と医療システムのコスト削減を目的とした研究を行うための潜在的能力を生み出している。
近年,医学分野で注目されている話題の一つとして,退院直後に再入院する可能性の高い患者があげられる。
この同定は、医師が適切な治療方法を選択するのに役立つため、患者の再入院率を低下させ、効果的に治療費を削減できる。
本研究では,テキストマイニングによる患者の再入院の予測と,患者の電子ファイルにおける退院報告テキストの処理について論じる。
この目的のために, 患者容積を予測するプロセスにおいて, 単語袋と概念袋の2つのアプローチを用いて, 各種機械学習モデルの性能評価を行った。
これらの手法の効率を比較すると、他の機械学習モデルやアプローチよりもランダムな森林モデルと概念の袋の方が優れていることが示される。
この研究は、この分野で機械学習モデルを利用した同様の研究と比較して、患者の再入院の確率を68.9%のリコールスコアで予測する上で、最も高いスコアを達成している。
関連論文リスト
- Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
7つのディフフェレント分類アルゴリズムを用いてデータを解析した。
線形カーネルを持つサポートベクターマシン(SVM)の精度は76.1%であった。
論文 参考訳(メタデータ) (2023-02-10T13:04:47Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Segmentation analysis and the recovery of queuing parameters via the
Wasserstein distance: a study of administrative data for patients with
chronic obstructive pulmonary disease [0.0]
この研究は、慢性閉塞性肺疾患(COPD)患者のリソース要求がどのように変化するかを分析するために、データ駆動型アプローチを用いている。
これは、セグメント化、運用キューイング理論、不完全データからのパラメータの回復という、しばしば異なる分析様式の新たな組み合わせで構成されている。
論文 参考訳(メタデータ) (2020-08-10T17:47:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。