Pairwise Comparisons Are All You Need
- URL: http://arxiv.org/abs/2403.09746v2
- Date: Mon, 15 Jul 2024 18:19:48 GMT
- Title: Pairwise Comparisons Are All You Need
- Authors: Nicolas Chahine, Sira Ferradans, Jean Ponce,
- Abstract summary: Blind image quality assessment (BIQA) approaches often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images.
This paper introduces PICNIQ, a pairwise comparison framework designed to bypass the limitations of conventional BIQA.
By employing psychometric scaling algorithms, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality.
- Score: 22.798716660911833
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Blind image quality assessment (BIQA) approaches, while promising for automating image quality evaluation, often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images. This one-size-fits-all approach overlooks the crucial perceptual relationship between image content and quality, leading to a 'domain shift' challenge where a single quality metric inadequately represents various content types. Furthermore, BIQA techniques typically overlook the inherent differences in the human visual system among different observers. In response to these challenges, this paper introduces PICNIQ, a pairwise comparison framework designed to bypass the limitations of conventional BIQA by emphasizing relative, rather than absolute, quality assessment. PICNIQ is specifically designed to estimate the preference likelihood of quality between image pairs. By employing psychometric scaling algorithms, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality. The proposed framework implements a deep learning architecture in combination with a specialized loss function, and a training strategy optimized for sparse pairwise comparison settings. We conduct our research using comparison matrices from the PIQ23 dataset, which are published in this paper. Our extensive experimental analysis showcases PICNIQ's broad applicability and competitive performance, highlighting its potential to set new standards in the field of BIQA.
Related papers
- Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment [15.235786583920062]
Blind image quality assessment (BIQA) serves as a fundamental task in computer vision, yet it often fails to consistently align with human subjective perception.
Recent advances show that multi-scale evaluation strategies are promising due to their ability to replicate the hierarchical structure of human vision.
This paper addresses two primary challenges: the significant redundancy of information across different scales, and the confusion caused by combining features from these scales.
arXiv Detail & Related papers (2024-11-13T20:17:30Z) - Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare [99.57567498494448]
We introduce Compare2Score, an all-around LMM-based no-reference IQA model.
During training, we generate scaled-up comparative instructions by comparing images from the same IQA dataset.
Experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training.
arXiv Detail & Related papers (2024-05-29T17:26:09Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
Different NR-IQA models are likely to induce different enhanced images, which are ultimately subject to psychophysical testing.
This leads to a new computational method for comparing NR-IQA models within the analysis-by-synthesis framework.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
Perceptual Image Quality Index (PIQI) is proposed to assess the quality of digital images.
The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods.
arXiv Detail & Related papers (2023-05-16T06:44:17Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
Blind image quality assessment (BIQA) predicts the human perception of image quality without any reference information.
We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks.
arXiv Detail & Related papers (2023-03-27T07:58:09Z) - Full-Reference Calibration-Free Image Quality Assessment [2.5782420501870287]
Full Reference (FR) techniques provide estimates linearly correlated with human scores without using calibration.
The resulting calibration-free FR IQA methods are suited for applications where interoperability across different imaging systems and on different VDs is a major requirement.
arXiv Detail & Related papers (2022-05-24T15:06:35Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
Super-Resolution technique has greatly improved the visual quality of images by enhancing their resolutions.
It also calls for an efficient SR Image Quality Assessment (SR-IQA) to evaluate those algorithms or their generated images.
In emerging deep-learning-based SR, a generated high-quality, visually pleasing image may have different structures from its corresponding low-quality image.
arXiv Detail & Related papers (2022-05-07T07:52:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.