Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
- URL: http://arxiv.org/abs/2504.06301v2
- Date: Thu, 10 Apr 2025 11:37:08 GMT
- Title: Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
- Authors: Mohsen Jenadeleh, Jon Sneyers, Panqi Jia, Shima Mohammadi, Joao Ascenso, Dietmar Saupe,
- Abstract summary: We present a comprehensive subjective visual quality assessment of JPEG AI-compressed images using the JPEG AIC-3 methodology.<n>We reconstructed JND-based quality scales using a unified model based on boosted and plain triplet comparisons.<n>The CVVDP metric achieved the overall highest performance; however, most metrics including CVDP were overly optimistic in predicting the quality of JPEG AI-compressed images.
- Score: 2.296138318128071
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning-based image compression methods have recently emerged as promising alternatives to traditional codecs, offering improved rate-distortion performance and perceptual quality. JPEG AI represents the latest standardized framework in this domain, leveraging deep neural networks for high-fidelity image reconstruction. In this study, we present a comprehensive subjective visual quality assessment of JPEG AI-compressed images using the JPEG AIC-3 methodology, which quantifies perceptual differences in terms of Just Noticeable Difference (JND) units. We generated a dataset of 50 compressed images with fine-grained distortion levels from five diverse sources. A large-scale crowdsourced experiment collected 96,200 triplet responses from 459 participants. We reconstructed JND-based quality scales using a unified model based on boosted and plain triplet comparisons. Additionally, we evaluated the alignment of multiple objective image quality metrics with human perception in the high-fidelity range. The CVVDP metric achieved the overall highest performance; however, most metrics including CVVDP were overly optimistic in predicting the quality of JPEG AI-compressed images. These findings emphasize the necessity for rigorous subjective evaluations in the development and benchmarking of modern image codecs, particularly in the high-fidelity range. Another technical contribution is the introduction of the well-known Meng-Rosenthal-Rubin statistical test to the field of Quality of Experience research. This test can reliably assess the significance of difference in performance of quality metrics in terms of correlation between metrics and ground truth. The complete dataset, including all subjective scores, is publicly available at https://github.com/jpeg-aic/dataset-JPEG-AI-SDR25.
Related papers
- Fine-grained subjective visual quality assessment for high-fidelity compressed images [4.787528476079247]
The JPEG standardization project AIC is developing a subjective image quality assessment methodology for high-fidelity images.
This paper presents the proposed assessment methods, a dataset of high-quality compressed images, and their corresponding crowdsourced visual quality ratings.
It also outlines a data analysis approach that reconstructs quality scale values in just noticeable difference (JND) units.
arXiv Detail & Related papers (2024-10-12T11:37:19Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
We introduce a dual-branch network for portrait image quality assessment (PIQA)
We utilize two backbone networks (textiti.e., Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it.
We leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features.
arXiv Detail & Related papers (2024-05-14T12:43:43Z) - Pairwise Comparisons Are All You Need [22.798716660911833]
Blind image quality assessment (BIQA) approaches often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images.
This paper introduces PICNIQ, a pairwise comparison framework designed to bypass the limitations of conventional BIQA.
By employing psychometric scaling algorithms, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality.
arXiv Detail & Related papers (2024-03-13T23:43:36Z) - Compressed image quality assessment using stacking [4.971244477217376]
Generalization can be regarded as the major challenge in compressed image quality assessment.
Both semantic and low-level information are employed in the presented IQA to predict the human visual system.
The accuracy of the quality benchmark of the clic2024 perceptual image challenge was achieved 79.6%.
arXiv Detail & Related papers (2024-02-01T20:12:26Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
Perceptual Image Quality Index (PIQI) is proposed to assess the quality of digital images.
The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods.
arXiv Detail & Related papers (2023-05-16T06:44:17Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
We propose a different paradigm for JPEG artifact correction.
We aim to obtain sharp, detailed and visually reconstructed images, while being consistent with the compressed input.
Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency.
arXiv Detail & Related papers (2022-11-21T19:47:59Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Towards Flexible Blind JPEG Artifacts Removal [73.46374658847675]
We propose a flexible blind convolutional neural network, namely FBCNN, that can predict the adjustable quality factor to control the trade-off between artifacts removal and details preservation.
Our proposed FBCNN achieves favorable performance against state-of-the-art methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-09-29T17:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.