Learning Social Cost Functions for Human-Aware Path Planning
- URL: http://arxiv.org/abs/2407.10547v2
- Date: Fri, 18 Oct 2024 12:25:46 GMT
- Title: Learning Social Cost Functions for Human-Aware Path Planning
- Authors: Andrea Eirale, Matteo Leonetti, Marcello Chiaberge,
- Abstract summary: We propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them.
Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task.
- Score: 2.6995631218854235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving social acceptance is one of the main goals of Social Robotic Navigation. Despite this topic has received increasing interest in recent years, most of the research has focused on driving the robotic agent along obstacle-free trajectories, planning around estimates of future human motion to respect personal distances and optimize navigation. However, social interactions in everyday life are also dictated by norms that do not strictly depend on movement, such as when standing at the end of a queue rather than cutting it. In this paper, we propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them. This solution enables the robot to carry out different social navigation behaviors that would not arise otherwise, maintaining the robustness of traditional navigation. Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task. As a proof of concept, we consider the tasks of queuing and respect interaction spaces of groups of people talking to one another, but the method can be extended to other human activities that do not involve motion.
Related papers
- Following the Human Thread in Social Navigation [10.384957135051119]
The success of collaboration between humans and robots in shared environments relies on the robot's real-time adaptation to human motion.
Human trajectories emerge as crucial cues in Social Navigation, but they are partially observable from the robot's egocentric view.
We propose the first Social Dynamics Adaptation model (SDA) based on the robot's state-action history to infer the social dynamics.
arXiv Detail & Related papers (2024-04-17T12:39:48Z) - Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning [0.7864304771129751]
Mobile robots are being used on a large scale in various crowded situations and become part of our society.
Socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance.
We propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans.
arXiv Detail & Related papers (2024-03-14T18:25:40Z) - Exploring Social Motion Latent Space and Human Awareness for Effective
Robot Navigation in Crowded Environments [3.714800947440209]
The proposed method achieves significant improvements in social navigation metrics such as success rate, navigation time, and trajectory length.
The concept of humans' awareness towards the robot is introduced into the social robot navigation framework.
arXiv Detail & Related papers (2023-10-11T09:25:24Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
We argue that social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation.
Our proposed framework consists of two components: textitlearning which incorporates social context into the learning process to account for safety and comfort, and textitrelearning to detect and correct potentially harmful outcomes before the onset.
arXiv Detail & Related papers (2021-01-07T17:42:35Z) - Social Navigation with Human Empowerment driven Deep Reinforcement
Learning [20.815007485176615]
The next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators.
In this paper, we go beyond the approach of classical acfRL and provide our agent with intrinsic motivation using empowerment.
Our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal.
arXiv Detail & Related papers (2020-03-18T11:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.