論文の概要: Fisher Mask Nodes for Language Model Merging
- arxiv url: http://arxiv.org/abs/2403.09891v2
- Date: Mon, 18 Mar 2024 23:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:39:33.677288
- Title: Fisher Mask Nodes for Language Model Merging
- Title(参考訳): 言語モデルマージのためのフィッシャーマスクノード
- Authors: Thennal D K, Ganesh Nathan, Suchithra M S,
- Abstract要約: 本稿では,トランスフォーマーの新たなモデルマージ手法について紹介し,フィッシャー重み付けにおける過去の研究成果とモデルプルーニングにおけるフィッシャー情報の利用について考察する。
提案手法は,BERTファミリーの各種モデルに対して,正規かつ顕著な性能向上を示し,計算コストのごく一部において,大規模フィッシャー重み付き平均値よりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning pre-trained models provides significant advantages in downstream performance. The ubiquitous nature of pre-trained models such as BERT and its derivatives in natural language processing has also led to a proliferation of task-specific fine-tuned models. As these models typically only perform one task well, additional training or ensembling is required in multi-task scenarios. The growing field of model merging provides a solution, dealing with the challenge of combining multiple task-specific models into a single multi-task model. In this study, we introduce a novel model merging method for Transformers, combining insights from previous work in Fisher-weighted averaging and the use of Fisher information in model pruning. Utilizing the Fisher information of mask nodes within the Transformer architecture, we devise a computationally efficient weighted-averaging scheme. Our method exhibits a regular and significant performance increase across various models in the BERT family, outperforming full-scale Fisher-weighted averaging in a fraction of the computational cost, with baseline performance improvements of up to +6.5 and a speedup of 57.4x in the biggest model. Our results prove the potential of our method in current multi-task learning environments and suggest its scalability and adaptability to new model architectures and learning scenarios.
- Abstract(参考訳): 微調整された事前訓練モデルは、下流のパフォーマンスにおいて大きな利点をもたらす。
BERTなどの事前学習モデルの自然言語処理におけるユビキタスな性質は、タスク固有の微調整モデルの普及にも繋がった。
これらのモデルは一般的に1つのタスクのみをうまく実行するので、マルチタスクのシナリオでは追加のトレーニングやアンサンブルが必要になる。
モデルマージの増大する分野は、複数のタスク固有のモデルを単一のマルチタスクモデルに組み合わせるという課題に対処するソリューションを提供する。
本研究では, トランスフォーマーのモデルマージ手法について紹介し, 従来のフィッシャー重み付き平均化における知見と, モデルプルーニングにおけるフィッシャー情報の利用について考察した。
トランスフォーマーアーキテクチャにおけるマスクノードのフィッシャー情報を利用して,計算効率のよい重み付け手法を提案する。
提案手法は, BERT シリーズの各種モデルにおいて, 計算コストのごく一部において, フルスケールのフィッシャー重み付け平均性能を上回り, ベースライン性能は+6.5 まで向上し, 最大速度は57.4倍に向上した。
本研究は,現在のマルチタスク学習環境における本手法の有効性を実証し,新しいモデルアーキテクチャや学習シナリオに対するスケーラビリティと適応性を提案する。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks [12.146530928616386]
目標問題に対する一般的なアプローチは、特定の目標タスクに対して、訓練済みの基礎モデルを微調整することである。
この研究は、補助的なタスクのスペクトルから導かれた同じ基礎モデルの複数の微調整をマージする問題に焦点を当てる。
事前学習したモデルの重み空間内でモデル適応を誘導する疎定義の重み集合からなる,新しい簡易な方法であるモデルブレッドクラブを導入する。
論文 参考訳(メタデータ) (2023-12-11T19:10:55Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
公開されている事前訓練されたモデルの目標タスクへの転送可能性の推定は、伝達学習タスクにとって重要な場所となっている。
本稿では, モデルアンサンブルの下流タスクへの転送可能性を評価するために, 最適なtranSportベースのsuBmOdular tRaNsferability Metrics(OSBORN)を提案する。
論文 参考訳(メタデータ) (2023-09-05T17:57:31Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
我々は、複数のモデルを1つに“マージ”するモデル間で知識を伝達する、根本的に異なる方法を紹介します。
提案手法は,モデルのパラメータの重み付け平均を効果的に計算する。
マージ手順により、これまで探索されていなかった方法でモデルを組み合わせることが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-18T17:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。