論文の概要: Right Place, Right Time! Generalizing ObjectNav to Dynamic Environments with Portable Targets
- arxiv url: http://arxiv.org/abs/2403.09905v2
- Date: Sun, 01 Dec 2024 21:42:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:04.254420
- Title: Right Place, Right Time! Generalizing ObjectNav to Dynamic Environments with Portable Targets
- Title(参考訳): 移動可能なターゲットを持つ動的環境へのObjectNavの一般化
- Authors: Vishnu Sashank Dorbala, Bhrij Patel, Amrit Singh Bedi, Dinesh Manocha,
- Abstract要約: 非定常オブジェクトを用いた動的環境にObjectNavを一般化するための新しい定式化を提案する。
まず、既存のトポロジ的シーングラフをダイナマイズする際のいくつかの課題に対処する。
次に、強化学習とLarge Language Model(LLM)に基づくナビゲーションアプローチを組み合わせたP-ObjectNavのベンチマークを示す。
- 参考スコア(独自算出の注目度): 55.581423861790945
- License:
- Abstract: ObjectNav is a popular task in Embodied AI, where an agent navigates to a target object in an unseen environment. Prior literature makes the assumption of a static environment with stationary objects, which lacks realism. To address this, we present a novel formulation to generalize ObjectNav to dynamic environments with non-stationary objects, and refer to it as Portable ObjectNav or P-ObjectNav. In our formulation, we first address several challenging issues with dynamizing existing topological scene graphs by developing a novel method that introduces multiple transition behaviors to portable objects in the scene. We use this technique to dynamize Matterport3D, a popular simulator for evaluating embodied tasks. We then present a benchmark for P-ObjectNav using a combination of heuristic, reinforcement learning, and Large Language Model (LLM)-based navigation approaches on the dynamized environment, while introducing novel evaluation metrics tailored for our task. Our work fundamentally challenges the "static-environment" notion of prior ObjectNav work; the code and dataset for P-ObjectNav will be made publicly available to foster research on embodied navigation in dynamic scenes. We provide an anonymized repository for our code and dataset: https://anonymous.4open.science/r/PObjectNav-1C6D.
- Abstract(参考訳): ObjectNavは、エージェントが見えない環境でターゲットオブジェクトにナビゲートする、Embodied AIで一般的なタスクである。
以前の文献では静的な環境を静止オブジェクトと仮定しており、現実主義を欠いている。
そこで我々は,非定常オブジェクトを持つ動的環境に対してObjectNavを一般化する新しい定式化を提案し,それを Portable ObjectNav あるいは P-ObjectNav と呼ぶ。
本定式化では,既存のトポロジカルシーングラフをダイナマイズする際のいくつかの課題に対処し,シーン内の可搬性オブジェクトへの複数の遷移挙動を導入する新しい手法を開発した。
我々は,この手法を用いて,具体的タスクを評価するための人気のあるシミュレータであるMatterport3Dをダイナマイズする。
そこで我々は,本課題に適した新しい評価指標を導入しながら,ヒューリスティック,強化学習,Large Language Model(LLM)に基づくダイナマイズ環境のナビゲーション手法を組み合わせたP-ObjectNavのベンチマークを提案する。
P-ObjectNavのコードとデータセットが公開され、動的シーンにおける実施されたナビゲーションの研究が促進されます。
コードとデータセットの匿名リポジトリを提供する。 https://anonymous.4open.science/r/PObjectNav-1C6D。
関連論文リスト
- Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments [44.6372390798904]
本稿では,特定の個人オブジェクトの位置と到達を具体化するタスクデノマイトされたパーソナライズされたパーソナライズドインスタンスベースのナビゲーション(PIN)を提案する。
各エピソードにおいて、ターゲットオブジェクトは、中性背景上の視覚的参照画像のセットと手動による注釈付きテキスト記述の2つのモードを使用してエージェントに提示される。
論文 参考訳(メタデータ) (2024-10-23T18:01:09Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
言語駆動型ゼロショットオブジェクトゴールナビゲーション(L-ZSON)のための新しいアルゴリズムLGXを提案する。
このアプローチでは、このタスクにLarge Language Models(LLM)を使用します。
現状のゼロショットオブジェクトナビゲーションをRoboTHOR上で実現し,現在のベースラインよりも27%以上の成功率(SR)向上を実現した。
論文 参考訳(メタデータ) (2023-03-06T20:19:19Z) - A Contextual Bandit Approach for Learning to Plan in Environments with
Probabilistic Goal Configurations [20.15854546504947]
本研究では,静的なオブジェクトだけでなく可動なオブジェクトに対しても,屋内環境を効率的に探索できるオブジェクトナビのためのモジュラーフレームワークを提案する。
我々は,不確実性に直面した場合の楽観性を示すことにより,環境を効率的に探索する。
提案アルゴリズムを2つのシミュレーション環境と実世界の環境で評価し,高いサンプル効率と信頼性を示す。
論文 参考訳(メタデータ) (2022-11-29T15:48:54Z) - Object Memory Transformer for Object Goal Navigation [10.359616364592075]
本稿では,物体目標ナビゲーション(Nav)のための強化学習手法を提案する。
エージェントは3次元屋内環境をナビゲートし、対象物やシーンの長期観察に基づいて対象物に到達する。
私たちの知る限りでは、ゴール指向ナビゲーションタスクにおけるオブジェクトセマンティクスの長期記憶を利用する最初の作業である。
論文 参考訳(メタデータ) (2022-03-24T09:16:56Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
推定距離マップに基づいて経路計画を直接実行可能なオブジェクトゴールナビゲーションフレームワークを提案する。
具体的には,鳥眼のセマンティックマップを入力として,地図セルから対象物までの距離を推定する。
推定距離マップを用いて、エージェントは環境を探索し、人間設計または学習されたナビゲーションポリシーに基づいて対象物に移動することができる。
論文 参考訳(メタデータ) (2022-02-08T09:22:50Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
本稿では, 屋内環境におけるオブジェクトのアクティブビジュアルサーチ(AVS)の最適ポリシーを, オンライン設定で学習する問題に焦点をあてる。
提案手法はエージェントの現在のポーズとRGB-Dフレームを入力として使用する。
提案手法を利用可能なAVDベンチマークで検証し,平均成功率0.76,平均パス長17.1とした。
論文 参考訳(メタデータ) (2020-09-17T08:23:50Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z) - ObjectNav Revisited: On Evaluation of Embodied Agents Navigating to
Objects [119.46959413000594]
この文書は、ObjectNavのワーキンググループのコンセンサスレコメンデーションを要約します。
評価基準の微妙だが重要な詳細について推奨する。
CVPR 2020のEmbodied AIワークショップで実施された課題において、これらの推奨事項のインスタンス化について、詳細な説明を行う。
論文 参考訳(メタデータ) (2020-06-23T17:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。