論文の概要: Identifying Health Risks from Family History: A Survey of Natural Language Processing Techniques
- arxiv url: http://arxiv.org/abs/2403.09997v1
- Date: Fri, 15 Mar 2024 03:43:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:48:40.179458
- Title: Identifying Health Risks from Family History: A Survey of Natural Language Processing Techniques
- Title(参考訳): 家族史から健康リスクを特定する:自然言語処理技術に関する調査
- Authors: Xiang Dai, Sarvnaz Karimi, Nathan O'Callaghan,
- Abstract要約: 本研究では,家族性疾患のリスクを特定するために,デジタル健康記録を活用するために開発された技術について文献調査を行った。
ルールベースの手法は研究が盛んであり、現在も家族の歴史抽出に積極的に利用されている点を強調した。
より最近の取り組みは、大規模で事前訓練された言語モデルに基づくニューラルモデルの構築である。
- 参考スコア(独自算出の注目度): 10.121264712810616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic health records include information on patients' status and medical history, which could cover the history of diseases and disorders that could be hereditary. One important use of family history information is in precision health, where the goal is to keep the population healthy with preventative measures. Natural Language Processing (NLP) and machine learning techniques can assist with identifying information that could assist health professionals in identifying health risks before a condition is developed in their later years, saving lives and reducing healthcare costs. We survey the literature on the techniques from the NLP field that have been developed to utilise digital health records to identify risks of familial diseases. We highlight that rule-based methods are heavily investigated and are still actively used for family history extraction. Still, more recent efforts have been put into building neural models based on large-scale pre-trained language models. In addition to the areas where NLP has successfully been utilised, we also identify the areas where more research is needed to unlock the value of patients' records regarding data collection, task formulation and downstream applications.
- Abstract(参考訳): 電子的な健康記録には、遺伝する可能性のある疾患や障害の歴史をカバーできる患者の状態や医療史に関する情報が含まれている。
家族の歴史情報の重要な用途は、予防措置で人口を健康に保つことを目的としている精度の健康である。
自然言語処理(NLP)や機械学習技術は、健康専門家が健康上のリスクを後年開発する前に識別し、命の節約と医療費の削減に役立てることができる。
本研究は,家族性疾患のリスクを特定するために,デジタル健康記録を活用したNLP分野の文献調査である。
ルールベースの手法は研究が盛んであり、現在も家族の歴史抽出に積極的に利用されている点を強調した。
それでも、より最近の取り組みでは、大規模で事前訓練された言語モデルに基づいたニューラルモデルの構築が試みられている。
また,NLPの活用に成功している分野に加えて,データ収集やタスクの定式化,下流アプリケーションといった患者の記録の価値を解放するために,さらなる研究が必要である分野も明らかにした。
関連論文リスト
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
自然言語処理は、その非識別プロセスの自動化の可能性を繰り返し示してきた。
本研究の目的は,過去13年間に臨床自由テキストの非識別化が進展したことを示す体系的な証拠を提供することである。
論文 参考訳(メタデータ) (2023-11-28T13:20:41Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Developing a Robust Computable Phenotype Definition Workflow to Describe
Health and Disease in Observational Health Research [0.6465251961564604]
健康情報学は患者の健康データに基づいて構築される。
標準化は、疫学などの分野で使われる一般的な指標である人口統計を計算するために必要である。
患者データを構造化・分析するための標準は存在するが、厳格に定義するための類似のベストプラクティスは存在しない。
論文 参考訳(メタデータ) (2023-03-30T15:29:54Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Ontology-Driven Self-Supervision for Adverse Childhood Experiences
Identification Using Social Media Datasets [1.0349800230036503]
逆児体験(ACE)は、精神疾患やその後の生活における他の異常な行動のリスクの増加と関連していることが示されている。
自然言語処理(NLP)によるテキストデータからのACEの識別は,NLP対応のACEが存在しないため困難である。
本稿では,大規模機械学習を支援するために,オントロジー駆動型自己教師型手法を提案する。
論文 参考訳(メタデータ) (2022-08-24T12:23:01Z) - On Curating Responsible and Representative Healthcare Video
Recommendations for Patient Education and Health Literacy: An Augmented
Intelligence Approach [5.545277272908999]
アメリカの成人の3人に1人がインターネットを使って健康上の懸念を診断し、学んでいる。
健康リテラシーの分割はアルゴリズムの推薦によって悪化する可能性がある。
論文 参考訳(メタデータ) (2022-07-13T01:54:59Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Multilingual Medical Question Answering and Information Retrieval for
Rural Health Intelligence Access [1.0499611180329804]
いくつかの発展途上国の農村部では、高品質な医療、医療インフラ、専門的診断へのアクセスはほとんど利用できない。
このような医療アクセスの欠如、患者の以前の健康記録の欠如、および先住民語での情報の置換によるいくつかの死を、容易に防ぐことができる。
本稿では,機械学習とNLP(Natural Language Processing)技術における現象の進展を利用して,低リソース・多言語・予備的ファーストポイント・オブ・コンタクト・メディカルアシスタントを設計するアプローチについて述べる。
論文 参考訳(メタデータ) (2021-06-02T16:05:24Z) - A Systematic Review of Natural Language Processing for Knowledge
Management in Healthcare [0.6193838300896449]
本研究の目的は,NLPの可能性,特にNLPが医療領域における知識管理プロセスをどのようにサポートするかを明らかにすることである。
本稿では、医療分野における知識の創出、獲得、共有、適用の方法について、最先端のNLP研究を包括的に調査する。
論文 参考訳(メタデータ) (2020-07-17T17:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。