論文の概要: Fast biological imaging with quantum-enhanced Raman microscopy
- arxiv url: http://arxiv.org/abs/2403.10077v1
- Date: Fri, 15 Mar 2024 07:44:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:09:44.030269
- Title: Fast biological imaging with quantum-enhanced Raman microscopy
- Title(参考訳): 量子化ラマン顕微鏡による高速生体イメージング
- Authors: Alex Terrasson, Nicolas P. Mauranyapin, Catxere A. Casacio, Joel Q. Grim, Kai Barnscheidt, Boris Hage, Michael A. Taylor, W. P. Bowen,
- Abstract要約: 我々は,Ramanプロセスの最適効率で動作可能な,明るい圧縮シングルビームを用いた量子増強型Raman顕微鏡を報告する。
18秒で100×100ピクセルの撮像速度はセルオルガンのダイナミックスを解消する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Stimulated Raman scattering (SRS) microscopy is a powerful label-free imaging technique that probes the vibrational response of chemicals with high specificity and sensitivity. High-power, quantum-enhanced SRS microscopes have been recently demonstrated and applied to polymers and biological samples. Quantum correlations, in the form of squeezed light, enable the microscopes to operate below the shot noise limit, enhancing their performance without increasing the illumination intensity. This addresses the signal-to-noise ratio (SNR) and speed constraints introduced by photodamage in shot noise-limited microscopes. Previous microscopes have either used single-beam squeezing, but with insufficient brightness to reach the optimal ratio of pump-to-Stokes intensity for maximum SNR, or have used twin-beam squeezing and suffered a 3 dB noise penalty. Here we report a quantum-enhanced Raman microscope that uses a bright squeezed single-beam, enabling operation at the optimal efficiency of the SRS process. The increase in brightness leads to multimode effects that degrade the squeezing level, which we partially overcome using spatial filtering. We apply our quantum-enhanced SRS microscope to biological samples, and demonstrate quantum-enhanced multispectral imaging of living cells. The imaging speed of 100x100 pixels in 18 seconds allows the dynamics of cell organelles to be resolved. The SNR achieved is compatible with video rate imaging, with the quantum correlations yielding a 20% improvement in imaging speed compared to shot noise limited operation.
- Abstract(参考訳): 刺激ラマン散乱(SRS)顕微鏡は、高い特異性と感度で化学物質の振動応答をプローブする強力なラベルフリーイメージング技術である。
高分子や生物試料に高出力で量子増強されたSRS顕微鏡が最近実証され応用されている。
量子相関は、圧縮光の形で、顕微鏡がショットノイズ限界以下で動作し、照明強度を増大させることなく性能を向上させることができる。
これは、ショットノイズ制限顕微鏡において、信号対雑音比(SNR)と光損傷によって引き起こされる速度制約に対処する。
以前の顕微鏡ではシングルビーム・スクイーズを使用していたが、最大SNRのポンプ・ストークス強度の最適比に達するには明るさが不十分であったり、ツインビーム・スクイーズを使用して3dBのノイズペナルティを被ったりしていた。
本稿では,SRSプロセスの最適効率で動作可能な,明るい圧縮シングルビームを用いた量子化ラマン顕微鏡について報告する。
明るさの増加は、空間フィルタリングによって部分的に克服したスケズレベルを低下させる多重モード効果をもたらす。
生体試料に量子強調SRS顕微鏡を適用し,生体細胞の量子強調マルチスペクトルイメージングを実証した。
18秒で100×100ピクセルの撮像速度はセルオルガンのダイナミックスを解消する。
達成されたSNRは、ビデオレートイメージングと互換性があり、量子相関は、ショットノイズ制限動作と比較して、撮像速度が20%向上する。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
本稿では, 点滅型蛍光ナノセンサを用いたメロロジーにおける空間分解能向上手法を提案する。
我々は, 生活科学分野において, 画像解析技術に補完される点滅蛍光センシング剤を日常的に活用できると考えている。
論文 参考訳(メタデータ) (2024-02-27T10:38:05Z) - Deep Learning Enables Large Depth-of-Field Images for
Sub-Diffraction-Limit Scanning Superlens Microscopy [16.152554659134246]
深層学習を用いて、光学超解像(OSR)画像と走査電子顕微鏡領域画像とのマッピング関係を得る。
提案手法は, チップレベルの欠陥検出, 生物学的試料分析, 法医学, その他の様々な分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-27T09:16:56Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
多光子干渉は光量子技術の中心にある。
そこで本研究では,共振器型集積光子源に必要なスケールで変形した光子を干渉させるのに十分な時間分解能で検出を実装できることを実験的に実証した。
ボソンサンプリング実験において,非イデアル光子の時間分解検出がエンタングル操作の忠実度を向上し,計算複雑性の低減を図ることができることを示す。
論文 参考訳(メタデータ) (2022-10-14T18:16:49Z) - Low dosage 3D volume fluorescence microscopy imaging using compressive
sensing [0.0]
本稿では, 圧縮センシングによる3Dボリュームの完全再構成を, 励起量の半分未満のSNRで行う方法を提案する。
ゼブラフィッシュ胚脊髄のRFP標識ニューロンの3次元体積を, 共焦点顕微鏡を用いて0.1umの軸方向サンプリングにより計測し, 本手法の実証を行った。
この研究で開発されたCSベースの手法は、2光子や光シート顕微鏡などの他の深部イメージングに容易に適用でき、サンプル光毒性の低減は重要な課題である。
論文 参考訳(メタデータ) (2022-01-03T18:44:50Z) - Self-Bayesian Aberration Removal via Constraints for Ultracold Atom
Microscopy [0.0]
超低温原子の高分解能イメージングは、通常、カスタムの高開口(NA)光学を必要とする。
実用的かつ経済的な高収差高分解能顕微鏡の目的として,低コストの高NA非球面レンズを用いた。
デジタル補正技術により, 密度密度相関測定における光子ショットノイズの寄与を低減できることを示す。
論文 参考訳(メタデータ) (2021-08-16T14:22:04Z) - Quantum microscopy based on Hong-Ou-Mandel interference [0.9322743017642272]
Hong-Ou-Mandel(HOM)干渉は量子光学の基礎であり、多くの量子センシングアプローチや最近の光学量子コンピュータの中心にある。
我々は、HOM干渉を利用して透明試料の表面深度プロファイルを再構成するフルフィールド、スキャンなし、量子イメージング技術について報告する。
論文 参考訳(メタデータ) (2021-08-11T17:56:37Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z) - Quantum correlations overcome the photodamage limits of light microscopy [0.0]
最先端の顕微鏡は、生物学的プロセス、機能、生存性を著しく阻害する強力なレーザーを使用する。
ここでは、この絶対的な量子優位性を実証し、従来の顕微鏡の光損傷のない容量を超える信号対雑音を達成する。
論文 参考訳(メタデータ) (2020-04-01T00:37:15Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。