A Central Motor System Inspired Pre-training Reinforcement Learning for Robotic Control
- URL: http://arxiv.org/abs/2311.07822v4
- Date: Sat, 28 Sep 2024 09:00:26 GMT
- Title: A Central Motor System Inspired Pre-training Reinforcement Learning for Robotic Control
- Authors: Pei Zhang, Zhaobo Hua, Jinliang Ding,
- Abstract summary: We propose CMS-PRL, a pre-training reinforcement learning method inspired by the Central Motor System.
First, we introduce a fusion reward mechanism that combines the basic motor reward with mutual information reward.
Second, we design a skill encoding method inspired by the motor program of the basal ganglia, providing rich and continuous skill instructions.
Third, we propose a skill activity function to regulate motor skill activity, enabling the generation of skills with different activity levels.
- Score: 7.227887302864789
- License:
- Abstract: The development of intelligent robots requires control policies that can handle dynamic environments and evolving tasks. Pre-training reinforcement learning has emerged as an effective approach to address these demands by enabling robots to acquire reusable motor skills. However, they often rely on large datasets or expert-designed goal spaces, limiting adaptability. Additionally, these methods need help to generate dynamic and diverse skills in high-dimensional state spaces, reducing their effectiveness for downstream tasks. In this paper, we propose CMS-PRL, a pre-training reinforcement learning method inspired by the Central Motor System (CMS). First, we introduce a fusion reward mechanism that combines the basic motor reward with mutual information reward, promoting the discovery of dynamic skills during pre-training without reliance on external data. Second, we design a skill encoding method inspired by the motor program of the basal ganglia, providing rich and continuous skill instructions during pre-training. Finally, we propose a skill activity function to regulate motor skill activity, enabling the generation of skills with different activity levels, thereby enhancing the robot's flexibility in downstream tasks. We evaluate the model on four types of robots in a challenging set of sparse-reward tasks. Experimental results demonstrate that CMS-PRL generates diverse, reusable motor skills to solve various downstream tasks and outperforms baseline methods, particularly in high-degree-of-freedom robots and complex tasks.
Related papers
- Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Foundational Policy Acquisition via Multitask Learning for Motor Skill Generation [0.9668407688201356]
We propose a multitask reinforcement learning algorithm for foundational policy acquisition to generate novel motor skills.
Inspired by human sensorimotor adaptation mechanisms, we aim to train encoder-decoder networks that can be commonly used to learn novel motor skills.
arXiv Detail & Related papers (2023-08-31T05:26:14Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models [29.34375999491465]
A core challenge for an autonomous agent acting in the real world is to adapt its repertoire of skills to cope with its noisy perception and dynamics.
To scale learning of skills to long-horizon tasks, robots should be able to learn and later refine their skills in a structured manner.
We proposeSAC-GMM, a novel hybrid approach that learns robot skills through a dynamical system and adapts the learned skills in their own trajectory distribution space.
arXiv Detail & Related papers (2021-11-25T15:36:11Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - Learning compositional models of robot skills for task and motion
planning [39.36562555272779]
We learn to use sensorimotor primitives to solve complex long-horizon manipulation problems.
We use state-of-the-art methods for active learning and sampling.
We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions.
arXiv Detail & Related papers (2020-06-08T20:45:34Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.