論文の概要: Read between the lines -- Functionality Extraction From READMEs
- arxiv url: http://arxiv.org/abs/2403.10205v1
- Date: Fri, 15 Mar 2024 11:11:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:30:38.908865
- Title: Read between the lines -- Functionality Extraction From READMEs
- Title(参考訳): 行間の読み書き -- READMEからの機能抽出
- Authors: Prince Kumar, Srikanth Tamilselvam, Dinesh Garg,
- Abstract要約: Gitファイルから機能を抽出する,新鮮で有用なバージョンを紹介します。
このタスクの背後にあるモチベーションは、コード関連のタスクに大規模言語モデルを使用することに関する研究と開発活動が最近急増したことに起因している。
最高の微調整された70億コードラマモデルは、それぞれChatGPTとBardに対するF1スコアに対して70%と20%の利得を示している。
- 参考スコア(独自算出の注目度): 7.302971710984904
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While text summarization is a well-known NLP task, in this paper, we introduce a novel and useful variant of it called functionality extraction from Git README files. Though this task is a text2text generation at an abstract level, it involves its own peculiarities and challenges making existing text2text generation systems not very useful. The motivation behind this task stems from a recent surge in research and development activities around the use of large language models for code-related tasks, such as code refactoring, code summarization, etc. We also release a human-annotated dataset called FuncRead, and develop a battery of models for the task. Our exhaustive experimentation shows that small size fine-tuned models beat any baseline models that can be designed using popular black-box or white-box large language models (LLMs) such as ChatGPT and Bard. Our best fine-tuned 7 Billion CodeLlama model exhibit 70% and 20% gain on the F1 score against ChatGPT and Bard respectively.
- Abstract(参考訳): テキスト要約はNLPタスクとしてよく知られているが,本論文では,Git READMEファイルから機能抽出と呼ばれる,新規かつ有用なバージョンを紹介する。
このタスクは、抽象レベルでのtext2text生成であるが、既存のtext2text生成システムがあまり役に立たないように、独自の特質と課題が伴う。
このタスクの背後にあるモチベーションは、コードリファクタリングやコードの要約など、コード関連のタスクに大規模な言語モデルを使用することに関する、最近の研究と開発活動の増加に端を発している。
また、FuncReadと呼ばれる人間による注釈付きデータセットをリリースし、タスクのためのモデルのバッテリーを開発しました。
我々の徹底的な実験により、小型の微調整モデルが、ChatGPTやBardのような一般的なブラックボックスやホワイトボックスの大規模言語モデル(LLM)を使って設計できるベースラインモデルに勝っていることが示された。
最高の微調整された70億コードラマモデルは、それぞれChatGPTとBardに対するF1スコアに対して70%と20%の利得を示している。
関連論文リスト
- Generative Representational Instruction Tuning [89.76840377003178]
GritLM 7B がMassive Text Embedding Benchmark (MTEB) に新たな技術状況を設定する
GritLM 8x7Bは、私たちが試したすべてのオープンな生成言語モデルよりも優れています。
論文 参考訳(メタデータ) (2024-02-15T12:12:19Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) は、要約技術の強化において、顕著な将来性を示している。
本稿では,MPT-7b-instruct,falcon-7b-instruct,OpenAI ChatGPT text-davinci-003 モデルなど,多種多様な LLM を用いたテキスト要約について検討する。
論文 参考訳(メタデータ) (2023-10-16T14:33:02Z) - Using Large Language Models for Zero-Shot Natural Language Generation
from Knowledge Graphs [4.56877715768796]
我々は,ChatGPTがWebNLG 2020の課題に対して,最先端のパフォーマンスを達成していることを示す。
また、LLMが解析しているデータについて既に知っていることと、出力テキストの品質との間には大きな関連性があることも示している。
論文 参考訳(メタデータ) (2023-07-14T12:45:03Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Understanding the Effectiveness of Very Large Language Models on Dialog
Evaluation [20.18656308749408]
大規模言語モデル (LLM) は生成に使われており、人間のようなテキストを出力することができる。
本稿では,プロンプト中のサンプル数と使用するサンプル選択の種類がモデルの性能に与える影響について検討する。
論文 参考訳(メタデータ) (2023-01-27T22:02:27Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
制御された自動ストーリ生成は、自然言語批判や嗜好から制約を満たす自然言語ストーリを生成することを目指している。
対照的なバイエンコーダモデルをトレーニングし、ストーリーを人間の批評と整合させ、汎用的な嗜好モデルを構築する。
我々はさらに、ストーリー生成の堅牢性を高めるために、プロンプトラーニング技術を用いて、対照的な報酬モデルを微調整する。
論文 参考訳(メタデータ) (2022-10-14T13:21:33Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
知識に富んだテキストを生成するための知識基盤事前学習(KGPT)を提案する。
我々は、その効果を評価するために、3つの設定、すなわち、完全教師付き、ゼロショット、少数ショットを採用します。
ゼロショット設定では、WebNLG上で30 ROUGE-L以上を達成するが、他の全てのベースラインは失敗する。
論文 参考訳(メタデータ) (2020-10-05T19:59:05Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。