論文の概要: Matrix Completion via Nonsmooth Regularization of Fully Connected Neural Networks
- arxiv url: http://arxiv.org/abs/2403.10232v1
- Date: Fri, 15 Mar 2024 12:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:20:54.846318
- Title: Matrix Completion via Nonsmooth Regularization of Fully Connected Neural Networks
- Title(参考訳): 完全連結ニューラルネットワークの非平滑正規化による行列補完
- Authors: Sajad Faramarzi, Farzan Haddadi, Sajjad Amini, Masoud Ahookhosh,
- Abstract要約: ディープニューラルネットワークのような非線形推定器を使うことで、性能の向上が達成できることが示されている。
本稿では,標準中間表現の観点から,FCNNモデルの正規化によるオーバーフィット制御を行う。
本シミュレーションは,既存の線形および非線形アルゴリズムと比較して,提案アルゴリズムの優位性を示す。
- 参考スコア(独自算出の注目度): 7.349727826230864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional matrix completion methods approximate the missing values by assuming the matrix to be low-rank, which leads to a linear approximation of missing values. It has been shown that enhanced performance could be attained by using nonlinear estimators such as deep neural networks. Deep fully connected neural networks (FCNNs), one of the most suitable architectures for matrix completion, suffer from over-fitting due to their high capacity, which leads to low generalizability. In this paper, we control over-fitting by regularizing the FCNN model in terms of the $\ell_{1}$ norm of intermediate representations and nuclear norm of weight matrices. As such, the resulting regularized objective function becomes nonsmooth and nonconvex, i.e., existing gradient-based methods cannot be applied to our model. We propose a variant of the proximal gradient method and investigate its convergence to a critical point. In the initial epochs of FCNN training, the regularization terms are ignored, and through epochs, the effect of that increases. The gradual addition of nonsmooth regularization terms is the main reason for the better performance of the deep neural network with nonsmooth regularization terms (DNN-NSR) algorithm. Our simulations indicate the superiority of the proposed algorithm in comparison with existing linear and nonlinear algorithms.
- Abstract(参考訳): 従来の行列補完法では、行列が低ランクであると仮定することで、欠落値の線形近似が導かれる。
ディープニューラルネットワークのような非線形推定器を使うことで、性能の向上が達成できることが示されている。
行列補完に最も適したアーキテクチャの1つである深層完全連結ニューラルネットワーク(FCNN)は、高容量のため過度に適合し、一般化性が低下する。
本稿では,中間表現の$\ell_{1}$ノルムと重み行列の核ノルムの観点から,FCNNモデルの正規化によるオーバーフィット制御を行う。
したがって、得られた正規化対象関数は非滑らかで非凸となり、つまり、既存の勾配に基づく手法は我々のモデルには適用できない。
近位勾配法の変種を提案し,その臨界点への収束について検討する。
FCNNトレーニングの初期のエポックでは、正規化用語は無視され、エポックを通じてその効果が増加する。
非平滑正規化項の段階的な追加は、非平滑正規化項(DNN-NSR)アルゴリズムによるディープニューラルネットワークの性能向上の主な理由である。
本シミュレーションは,既存の線形および非線形アルゴリズムと比較して,提案アルゴリズムの優位性を示す。
関連論文リスト
- Weight Conditioning for Smooth Optimization of Neural Networks [28.243353447978837]
本稿では,ニューラルネットワークの重み行列に対する新しい正規化手法を提案する。
このアプローチは、ウェイト行列の最小値と最大の特異値の間のギャップを狭くすることを目的としており、より良い条件付き行列をもたらす。
以上の結果から,本手法は競争力だけでなく,文献の既往の重み正規化手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-05T11:10:34Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Approximation Results for Gradient Descent trained Neural Networks [0.0]
ネットワークは完全に接続された一定の深さ増加幅である。
連続カーネルエラーノルムは、滑らかな関数に必要な自然な滑らかさの仮定の下での近似を意味する。
論文 参考訳(メタデータ) (2023-09-09T18:47:55Z) - A multiobjective continuation method to compute the regularization path of deep neural networks [1.3654846342364308]
数値効率を保証し、モデルの解釈性を改善し、堅牢性を向上させるため、ディープニューラルネットワーク(DNN)では、スパシティは高い特徴である。
本稿では,数百万のパラメータを持つ高次元勾配に対して,上述の目的に対するスパースフロント全体を極めて効率的な方法で実現するアルゴリズムを提案する。
正規化パスの知識がネットワークパラメトリゼーションを十分に一般化することを示す。
論文 参考訳(メタデータ) (2023-08-23T10:08:52Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
この研究は、ディープ線形ネットワークにおけるヘッセン解の最小トレースの帰納バイアスを理解するための第一歩となる。
測定値の標準等尺性(RIP)が1より大きいすべての深さについて、ヘッセンのトレースを最小化することは、対応する終端行列パラメータのシャッテン 1-ノルムを最小化するのとほぼ同値であることを示す。
論文 参考訳(メタデータ) (2023-06-22T23:14:57Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Why Learning of Large-Scale Neural Networks Behaves Like Convex
Optimization [6.852561400929072]
非スケール最適化問題の解法として単純な勾配降下法が成功した理由を説明するための理論的研究について述べる。
NN学習の目的関数が標準モデル空間の凸であることを示す。
論文 参考訳(メタデータ) (2019-03-06T02:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。