論文の概要: Overcoming Distribution Shifts in Plug-and-Play Methods with Test-Time Training
- arxiv url: http://arxiv.org/abs/2403.10374v1
- Date: Fri, 15 Mar 2024 15:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:41:56.926379
- Title: Overcoming Distribution Shifts in Plug-and-Play Methods with Test-Time Training
- Title(参考訳): 試験時間学習によるプラグアンドプレイ法における配電シフトの克服
- Authors: Edward P. Chandler, Shirin Shoushtari, Jiaming Liu, M. Salman Asif, Ulugbek S. Kamilov,
- Abstract要約: Plug-and-Play Priorsは、逆計算画像問題を解決するためのよく知られた方法である。
学習モデルの一般的な問題は、トレーニングデータとテストデータの間に分散がある場合のパフォーマンス低下である。
テストタイムトレーニング(TTT)は、データのトレーニングとテストで学んだパフォーマンスを改善する新しい方法として提案されている。
- 参考スコア(独自算出の注目度): 19.471103168872588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-TTT as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI).
- Abstract(参考訳): プラグ・アンド・プレイ優先法 (Plug-and-Play Priors, PnP) は、計算画像における逆問題の解法としてよく知られている。
PnP法は物理フォワードモデルと画像デノイザとして指定された学習前のモデルを組み合わせる。
学習したモデルの一般的な問題は、トレーニングデータとテストデータの間に分散シフトがある場合のパフォーマンス低下である。
テストタイムトレーニング(TTT)は,学習モデルの性能向上のための一般的な戦略として提案されている。
本稿では,PnPにおける分布シフトを克服する新しい手法として,PnP-TTTを提案する。
PnP-TTT は、PnP 反復の固定点における自己教師付き損失を最適化するために、Deep equilibrium learning (DEQ) を用いる。
PnP-TTTは、PnPの一般化を改善するために、1つのテストサンプルに直接適用することができる。
PnP-TTTは、十分な量の計測値が与えられているシミュレーションを通して、自然画像に基づいて訓練された画像プリエントを、MRI(MRI)における画像再構成に利用することができることを示す。
関連論文リスト
- Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - Fine Structure-Aware Sampling: A New Sampling Training Scheme for Pixel-Aligned Implicit Models in Single-View Human Reconstruction [98.30014795224432]
本研究では,単一視点の人物再構成のための暗黙的画素アライメントモデルをトレーニングするために,FSS(Final Structured-Aware Sampling)を導入する。
FSSは表面の厚さと複雑さに積極的に適応する。
また、画素アライメント型暗黙的モデルのためのメッシュ厚み損失信号を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:26:46Z) - Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation [14.71883381837561]
ドメイン間の分散シフトは、実世界のアプリケーションに事前訓練されたセマンティックセグメンテーションモデルをデプロイする上で重要な障害である。
テスト時間適応は、推論中にドメイン間の分布シフトに取り組むのに有効であることが証明されている。
本稿では,各テスト画像に対する特定のプロンプトをトレーニングし,バッチ正規化レイヤの統計値を調整するために,Visual Prompt-based Test-Time Adaptation (VPTTA)法を提案する。
論文 参考訳(メタデータ) (2023-11-30T09:03:47Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
DiffTPTを提案する。DiffTPTは,事前学習した拡散モデルを用いて,多種多様な情報データを生成する。
DiffTPTがゼロショット精度を平均5.13%向上することを示す。
論文 参考訳(メタデータ) (2023-08-11T09:36:31Z) - Statistical Foundations of Prior-Data Fitted Networks [0.7614628596146599]
近年,機械学習の新しいパラダイムとしてPFNが提案されている。
本稿では,PFNの理論的基盤を確立し,その挙動を制御している統計的メカニズムを照らす。
論文 参考訳(メタデータ) (2023-05-18T16:34:21Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
そこで本研究では, 分布変化のあるサンプルに対して, 安定な予測を行うための簡易なテスト時間適応手法を提案する。
提案手法は,強力なPLMバックボーンよりも推論時間が少なく,高い,あるいは同等の性能を実現することができる。
論文 参考訳(メタデータ) (2023-04-25T12:29:22Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Pre-Trained Image Processing Transformer [95.93031793337613]
我々は、新しい事前学習モデル、すなわち、画像処理変換器(IPT)を開発する。
本稿では、よく知られたImageNetベンチマークを用いて、大量の画像ペアを生成する。
IPTモデルは、これらの画像をマルチヘッドとマルチテールでトレーニングする。
論文 参考訳(メタデータ) (2020-12-01T09:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。