SocialGenPod: Privacy-Friendly Generative AI Social Web Applications with Decentralised Personal Data Stores
- URL: http://arxiv.org/abs/2403.10408v1
- Date: Fri, 15 Mar 2024 15:43:02 GMT
- Title: SocialGenPod: Privacy-Friendly Generative AI Social Web Applications with Decentralised Personal Data Stores
- Authors: Vidminas Vizgirda, Rui Zhao, Naman Goel,
- Abstract summary: SocialGenPod is a decentralised and privacy-friendly way of deploying generative AI Web applications.
We show how one can use Solid -- a decentralised Web specification -- to decouple user data from generative AI applications.
- Score: 8.402277698849362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SocialGenPod, a decentralised and privacy-friendly way of deploying generative AI Web applications. Unlike centralised Web and data architectures that keep user data tied to application and service providers, we show how one can use Solid -- a decentralised Web specification -- to decouple user data from generative AI applications. We demonstrate SocialGenPod using a prototype that allows users to converse with different Large Language Models, optionally leveraging Retrieval Augmented Generation to generate answers grounded in private documents stored in any Solid Pod that the user is allowed to access, directly or indirectly. SocialGenPod makes use of Solid access control mechanisms to give users full control of determining who has access to data stored in their Pods. SocialGenPod keeps all user data (chat history, app configuration, personal documents, etc) securely in the user's personal Pod; separate from specific model or application providers. Besides better privacy controls, this approach also enables portability across different services and applications. Finally, we discuss challenges, posed by the large compute requirements of state-of-the-art models, that future research in this area should address. Our prototype is open-source and available at: https://github.com/Vidminas/socialgenpod/.
Related papers
- Perennial Semantic Data Terms of Use for Decentralized Web [14.831528850463373]
We propose a novel formal description of Data Terms of Use (DToU)
Users and applications specify their own parts of the DToU policy with local knowledge.
This constitutes a perennial'' DToU language, where the policy authoring only occurs once.
arXiv Detail & Related papers (2024-03-12T12:18:20Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
We propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem.
We devise a novel framework textbfFedrated textbfSocial recommendation with textbfGraph neural network (FeSoG)
arXiv Detail & Related papers (2021-11-21T09:41:39Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z) - GitEvolve: Predicting the Evolution of GitHub Repositories [31.814226661858694]
We propose GitEvolve, a system to predict the evolution of GitHub repositories.
We map users to groups by modelling common interests to better predict popularity.
The proposed multi-task architecture is generic and can be extended to model information diffusion in other social networks.
arXiv Detail & Related papers (2020-10-09T04:32:15Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images.
We provide a novel Dual User-Adaptation framework (DUA) to explore the problem.
This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device.
arXiv Detail & Related papers (2020-03-30T09:35:12Z) - Practical Privacy Preserving POI Recommendation [26.096197310800328]
We propose a novel Privacy preserving POI Recommendation (PriRec) framework.
PriRec keeps users' private raw data and models in users' own hands, and protects user privacy to a large extent.
We apply PriRec in real-world datasets, and comprehensive experiments demonstrate that, compared with FM, PriRec achieves comparable or even better recommendation accuracy.
arXiv Detail & Related papers (2020-03-05T06:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.