Complete equational theories for classical and quantum Gaussian relations
- URL: http://arxiv.org/abs/2403.10479v3
- Date: Wed, 10 Apr 2024 18:22:20 GMT
- Title: Complete equational theories for classical and quantum Gaussian relations
- Authors: Robert I. Booth, Titouan Carette, Cole Comfort,
- Abstract summary: We give generators and relations for the hypergraph props of Gaussian relations and positive affine Lagrangian relations.
We also interpret the LOv-calculus for reasoning about passive linear-optical quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We give generators and relations for the hypergraph props of Gaussian relations and positive affine Lagrangian relations. The former extends Gaussian probabilistic processes by completely-uninformative priors, and the latter extends Gaussian quantum mechanics with infinitely-squeezed states. These presentations are given by adding a generator to the presentation of real affine relations and of real affine Lagrangian relations which freely codiscards effects, as well as certain rotations. The presentation of positive affine Lagrangian relations provides a rigorous justification for many common yet informal calculations in the quantum physics literature involving infinite-squeezing. Our presentation naturally extends Menicucci et al.'s graph-theoretic representation of Gaussian quantum states with a representation for Gaussian transformations. Using this graphical calculus, we also give a graphical proof of Braunstein and Kimble's continuous-variable quantum teleportation protocol. We also interpret the LOv-calculus, a diagrammatic calculus for reasoning about passive linear-optical quantum circuits in our graphical calculus. Moreover, we show how our presentation allows for additional optical operations such as active squeezing.
Related papers
- Graphical Calculus for Non-Gaussian Quantum States [1.653052113976862]
We provide a graphical method to describe and analyze non-Gaussian quantum states using a hypergraph framework.
We present illustrative examples on the preparation of non-Gaussian states rooted in these graph-based formalisms.
arXiv Detail & Related papers (2024-09-11T14:32:26Z) - Partial symplectic quantum tomography schemes. Observables, evolution equations, and stationary states equations [0.0]
Partial symplectic conditional and joint probability representations of quantum mechanics are considered.
The correspondence rules for most interesting physical operators are found and the expressions of the dual symbols of operators are derived.
arXiv Detail & Related papers (2024-05-30T20:25:09Z) - Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference [110.47649327040392]
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?"
We show how these questions can have compact, closed form solutions in terms of learned representations.
arXiv Detail & Related papers (2024-03-06T22:27:30Z) - Graphical Symplectic Algebra [0.0]
We give complete presentations for the dagger-compact props of affine Lagrangian and coisotropic relations over an arbitrary field.
This provides a unified family of graphical languages for both affinely constrained classical mechanical systems, as well as odd-prime-dimensional stabiliser quantum circuits.
arXiv Detail & Related papers (2024-01-15T19:07:33Z) - Light-Matter Interaction in the ZXW Calculus [0.08388591755871733]
We introduce the infinite ZW calculus, a graphical language for linear operators on the bosonic Fock space.
It is used to rewrite photonic circuits involving light-matter interactions and non-linear optical effects.
arXiv Detail & Related papers (2023-06-03T13:55:34Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Entropy Power Inequality in Fermionic Quantum Computation [0.0]
We prove an entropy power inequality (EPI) in a fermionic setting.
Similar relations to the bosonic case are shown, and alternative proofs of known facts are given.
arXiv Detail & Related papers (2020-08-12T19:07:40Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.