Lipsum-FT: Robust Fine-Tuning of Zero-Shot Models Using Random Text Guidance
- URL: http://arxiv.org/abs/2404.00860v1
- Date: Mon, 1 Apr 2024 02:01:33 GMT
- Title: Lipsum-FT: Robust Fine-Tuning of Zero-Shot Models Using Random Text Guidance
- Authors: Giung Nam, Byeongho Heo, Juho Lee,
- Abstract summary: Large-scale contrastive vision-language pre-trained models provide the zero-shot model achieving competitive performance across a range of image classification tasks without requiring training on downstream data.
Recent works have confirmed that additional fine-tuning of the zero-shot model on the reference data results in enhanced downstream performance, but compromises the model's robustness against distribution shifts.
We propose a novel robust fine-tuning algorithm, Lipsum-FT, that effectively utilizes the language modeling aspect of the vision-language pre-trained models.
- Score: 27.91782770050068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale contrastive vision-language pre-trained models provide the zero-shot model achieving competitive performance across a range of image classification tasks without requiring training on downstream data. Recent works have confirmed that while additional fine-tuning of the zero-shot model on the reference data results in enhanced downstream performance, it compromises the model's robustness against distribution shifts. Our investigation begins by examining the conditions required to achieve the goals of robust fine-tuning, employing descriptions based on feature distortion theory and joint energy-based models. Subsequently, we propose a novel robust fine-tuning algorithm, Lipsum-FT, that effectively utilizes the language modeling aspect of the vision-language pre-trained models. Extensive experiments conducted on distribution shift scenarios in DomainNet and ImageNet confirm the superiority of our proposed Lipsum-FT approach over existing robust fine-tuning methods.
Related papers
- Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
We show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed.
We perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models.
arXiv Detail & Related papers (2024-09-17T16:58:52Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study [61.65123150513683]
multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results.
It is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet.
We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark.
arXiv Detail & Related papers (2024-03-15T17:33:49Z) - Robust Fine-Tuning of Vision-Language Models for Domain Generalization [6.7181844004432385]
Foundation models have impressive zero-shot inference capabilities and robustness under distribution shifts.
We present a new recipe for few-shot fine-tuning of the popular vision-language foundation model CLIP.
Our experimentation demonstrates that, while zero-shot CLIP fails to match performance of trained vision models on more complex benchmarks, few-shot CLIP fine-tuning outperforms its vision-only counterparts.
arXiv Detail & Related papers (2023-11-03T20:50:40Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
"Score-based assessment" framework for estimating transferability of pre-trained speech models.
We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates.
Our framework efficiently computes transferability scores without actual fine-tuning of candidate models or layers.
arXiv Detail & Related papers (2023-06-01T04:52:26Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
We propose an unsupervised fine-tuning framework to fine-tune the model or prompt on the unlabeled target data.
We demonstrate how to apply our method to both language-augmented vision and masked-language models by aligning the discrete distributions extracted from the prompts and target data.
arXiv Detail & Related papers (2023-04-29T22:05:22Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
In this paper, we explore how to utilize pre-trained language model to perform few-shot text classification.
We adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data.
arXiv Detail & Related papers (2022-09-29T19:26:23Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
arXiv Detail & Related papers (2021-08-12T17:44:51Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Self-Supervised Contrastive Learning for Unsupervised Phoneme
Segmentation [37.054709598792165]
The model is a convolutional neural network that operates directly on the raw waveform.
It is optimized to identify spectral changes in the signal using the Noise-Contrastive Estimation principle.
At test time, a peak detection algorithm is applied over the model outputs to produce the final boundaries.
arXiv Detail & Related papers (2020-07-27T12:10:21Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.