論文の概要: Frozen Feature Augmentation for Few-Shot Image Classification
- arxiv url: http://arxiv.org/abs/2403.10519v1
- Date: Fri, 15 Mar 2024 17:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:01:36.192062
- Title: Frozen Feature Augmentation for Few-Shot Image Classification
- Title(参考訳): Few-Shot画像分類のための凍結機能拡張
- Authors: Andreas Bär, Neil Houlsby, Mostafa Dehghani, Manoj Kumar,
- Abstract要約: 冷凍機能強化(FroFA)は、大幅なオーバーヘッドなしにパフォーマンスを向上させるレシピである。
本研究は,3つのネットワークアーキテクチャにおいて,可視的に単純なFroFA(明度など)を採用することにより,ショット性能が一貫した向上が期待できることを示す。
- 参考スコア(独自算出の注目度): 37.951531908399915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a linear classifier or lightweight model on top of pretrained vision model outputs, so-called 'frozen features', leads to impressive performance on a number of downstream few-shot tasks. Currently, frozen features are not modified during training. On the other hand, when networks are trained directly on images, data augmentation is a standard recipe that improves performance with no substantial overhead. In this paper, we conduct an extensive pilot study on few-shot image classification that explores applying data augmentations in the frozen feature space, dubbed 'frozen feature augmentation (FroFA)', covering twenty augmentations in total. Our study demonstrates that adopting a deceptively simple pointwise FroFA, such as brightness, can improve few-shot performance consistently across three network architectures, three large pretraining datasets, and eight transfer datasets.
- Abstract(参考訳): 事前訓練された視覚モデル出力の上に線形分類器または軽量モデル(いわゆる「凍結機能」)を訓練すると、下流のいくつかのショットタスクにおいて印象的なパフォーマンスが得られる。
現在、凍結した機能はトレーニング中に変更されていない。
一方、ネットワークが直接画像に基づいてトレーニングされる場合、データ拡張は、大幅なオーバーヘッドを伴わずにパフォーマンスを向上させる標準的なレシピである。
本稿では,凍結機能拡張(FroFA)と呼ばれる凍結機能空間にデータ拡張を適用し,20種類の拡張を網羅した画像分類実験を行った。
本研究は,3つのネットワークアーキテクチャ,3つの大規模事前学習データセット,8つの転送データセットにおいて,可視的に単純なFroFA(輝度など)を採用することにより,ショット性能が一貫的に向上することを示した。
関連論文リスト
- Image edge enhancement for effective image classification [7.470763273994321]
ニューラルネットワークの精度とトレーニング速度を両立させるエッジ拡張に基づく手法を提案する。
我々のアプローチは、利用可能なデータセット内の画像からエッジなどの高周波特徴を抽出し、元の画像と融合させることである。
論文 参考訳(メタデータ) (2024-01-13T10:01:34Z) - Less is More: On the Feature Redundancy of Pretrained Models When
Transferring to Few-shot Tasks [120.23328563831704]
事前訓練されたモデルを下流タスクに転送することは、ターゲットデータと線形探索を行うのと同じくらい簡単である。
線形探索では, 下流データが少ない場合に, 事前学習した特徴が極めて冗長であることを示す。
論文 参考訳(メタデータ) (2023-10-05T19:00:49Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversionは、画像分類のための多種多様な高品質なトレーニングデータを生成するための、シンプルで効果的な方法である。
提案手法は,元のデータ分布を捕捉し,画像を安定拡散の潜在空間に反転させることにより,データカバレッジを確保する。
生成した画像が元のデータセットに取って代わることに成功した3つの重要なコンポーネントを特定します。
論文 参考訳(メタデータ) (2023-05-24T16:33:02Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
我々は、事前訓練されたテキスト・画像拡散モデルによりパラメータ化された画像・画像変換によるデータ拡張の多様性の欠如に対処する。
本手法は,市販の拡散モデルを用いて画像のセマンティクスを編集し,いくつかのラベル付き例から新しい視覚概念に一般化する。
本手法は,実世界の雑草認識タスクと数ショット画像分類タスクにおいて評価し,テスト領域における精度の向上を観察する。
論文 参考訳(メタデータ) (2023-02-07T20:42:28Z) - Could Giant Pretrained Image Models Extract Universal Representations? [94.97056702288317]
本稿では,多種多様なコンピュータビジョンタスクに適用した凍結事前学習モデルについて述べる。
私たちの研究は、この凍結した設定にどのような事前学習タスクが最適か、凍結した設定を様々な下流タスクに柔軟にする方法、より大きなモデルサイズの影響について、質問に答えています。
論文 参考訳(メタデータ) (2022-11-03T17:57:10Z) - Scaling Laws for the Few-Shot Adaptation of Pre-trained Image
Classifiers [11.408339220607251]
ニューラルネットワークのスケーリング法則の実証科学は、機械学習の未来にとって重要な領域として急速に成長している。
我々の主な目的は、事前学習データの量が標準画像分類器の少数ショット一般化性能にどのように影響するかを検討することである。
論文 参考訳(メタデータ) (2021-10-13T19:07:01Z) - Few-shot learning via tensor hallucination [17.381648488344222]
限定されたラベルデータのみを与えられた例を分類するという課題に対処する。
単純な損失関数を使うことは、少数ショット設定でフィーチャージェネレータをトレーニングするのに十分であることを示す。
提案手法は,より洗練されたデータ拡張手法を上回って,新たな技術状態を設定する。
論文 参考訳(メタデータ) (2021-04-19T17:30:33Z) - Memory-Efficient Incremental Learning Through Feature Adaptation [71.1449769528535]
本稿では,以前学習したクラスから,画像の特徴記述子を保存するインクリメンタルラーニングのアプローチを提案する。
画像のより低次元の機能埋め込みを維持することで、メモリフットプリントが大幅に削減される。
実験の結果,インクリメンタルラーニングベンチマークにおいて,最先端の分類精度が得られた。
論文 参考訳(メタデータ) (2020-04-01T21:16:05Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。